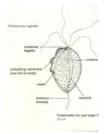
Bio 1A/1AL Images and Charts

Prokaryotes

Cyanobacteria:


Anabaena sp.

- Perform Nitrogen fixation with heterocysts
- Gram—negative
- photosynthesis

Eukaryotes

Excavata (flagellates):

Parabasilids:

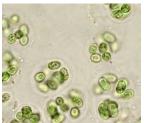
Tricomonas

- Relatively small
- Add methocel
- Found in termite gut (anaerobic environment): digests cellulose
- Lack plastids and oxidative respiration (no mt)

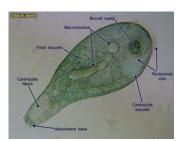
Euglenozoans:

Euglena

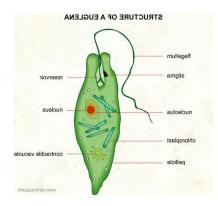
- Reddish photoreceptor (eye spot)
- One flagella
- Add methocel


Oscillatoria

- Oscillate by themselves
- Gram—negative
- photosynthesis


Spirulina

- Source of protein
- Gram—negative
- photosynthesis


Gloeocapsa

- Form colonies
- Gram—negative
- photosynthesis

Triconympha

- Very large
- Add methocel
- Found in termite gut (anaerobic environment): digests cellulose
- Lack plastids and oxidative respiration (no mt)

Streblomastix

- Relatively small
- Add methocel
- Found in termite gut (anaerobic environment): digests cellulose
- Lack plastids and oxidative respiration (no mt)

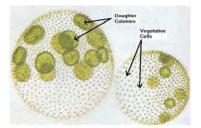
"SAR" / Chromalveolata:

Diatoms:

Phaeodactylum

- Algea
- Silca cell walls
- chlorophyl

Ciliates:


Paramecium

- Eat yeast
- Reproduce through cell division
- Add methocel
- Contain micro and macro nucleus.

Arcgaeoplastida:

Chlorophye:

Volvox

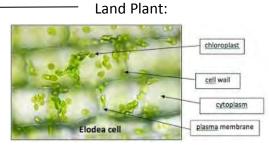
- Green algea
- Has parent and daughter colony
- Has flagella
- Add sand

Unikonta:

Amoebozoans/Tibulinds:

Amoeba

- Bottom dwellers
- Add sand
- Move with pseudopods (through cytoplasmic streaming)
- Use contractile vacuole to


regulate water balance

Green algea

Charophte:

 Uses cytoplasmic streaming (bulk mixing of cytoplasm)

Elodea

Has central vacuole

Choanoflagellates

chloroplasts

Animals:

Human Cheek Cell

- Dye (methylene) binds to DNA
- Saline solution is isotonic
- Type of epithelium

Fungi

	-0-										
Pro K	1 DS DNA, circle, nucleoid	No membrane bound organelles (nucleus, mts, vacuole, ER, Golgi, cts, lysosomes) but some have periplasmic space and heterocysts	Size 1-10 μm (10x smaller)	Ribosomes: smaller; susceptible to certain antibiotics, bound to PM	Cell wall: Composed of pepti- doglycan	Flagella: Composed of three parts: fila- ment, hook, and basal body, can have pili or cytoskeleton	Have prophag- es and oper- ons, and polycictronic mRNA	Divide by binary fis- sion,	Can simultane- ously script and slate	Genetic diversi- ty through: F plasmids, tranferance (DNA from surroundings, phages	1 origin of replication
EuK	>1 DS DNA, linear molecule, histones, telomeres	Membrane bound organelles (nucleus, mts, vacuole, ER, Golgi, cts, lysosomes)	10-100 μm (10x bigger)	Bigger, bound to RER	Cell wall: Composed of chitin in fungi, cellulose in plants	Flagella: Composed of microtubules: central pair sur- rounded by cylinder of 9 doublets, sur- rounded by mem- brane, centriole at base; can have cilia pili or cytoskeleton	Have post translational modification, TATA box in promoter, and AAUAAA termi- nation seq in scription	Mito- sis/ meio- sis	Compart- mentalize scrip- tion (nuc) and slation (cyt)	Genetic diversi- ty through: sexual reproduc- tion, mutations, transposons, etc	Many origins of replication

Plant Animal	Cell wall (cellulose	chloro- plasts	Few lyso- somes lysosomes	Central vacuole		centrioles	Oils uns	sat. fats aturated f	fats	Sitoserol Cholesterol	Extra	acellular	Sporophyte -> Spores & game- tophyte - >gametes Gametes (sperm/
											mat	rix	egg)
Fungi	Cell wall (chitin)									Ergosterol			
Ender (+G) v Exergonic(-G) Rxns: Cellular resp Photosynthesis Motor/transport Hyd ATP Transfer of e- from food to O2 (CR) Sealing backbone Injecting DNA Starch Glucose			ER)	Binding tRNA	 Chaperon Proteins (renaturation) Proteome (digestion in cell) Ribosomes Nucleus Vacuole 				Double	nsible for secreatory Membrane: cleus ochondrion proplasts			
				amylose)									
	Glycogen	Glucose		α (1-6 for bra	nches,	1-4 otherwis	se?)	animal				Storage	
	Cellulose	Glucose		β 1-4 linkage				Plant				Structure	
	Chitin	N-acetylglu	camine	β 1-4 linkage				Fungi/ a	animal exoskeletons			structure	
	Macro- molecule	Residue/mo		Active functio groups	nal	Polymers/large molecules Linkage				Function			
	Carbohy- drate	Sugar/ monosaccha glucose (aldo fructose (ketohexose (aldopentoso	ride. i.e: H phexose)) ribose	bonyl groups glud glud frud		gluc; lactos gluc; sucros fruc., oligos	gluc; lactose: β galact. A k gluc; sucrose: α gluc. B c ruc., oligosaccharides (3- 20) poly saccharides		Glycosidic linkage between OH on carbonyl carbon and other OH (ie 4,6 etc): H2O formed as product		e 4,6		
-	Protein	Amino acids plest glycine	—R = H a	Amine, carbox and R group (p non polar, or charged)	-	es and β plo secondary	olypeptides: form α helix-P s and β pleated sheets ash econdary structure held c		hyo car	Peptide bonds: de- hydration between carbonxl OH and amine		Structure, storage, transport, communi- cation, movement, enzymes, protection	
-	Lipid	Glycerol + fa	i	Carboxyl (fatty ac- id), double bond in unsat. Fatty acids, OH in glycerol		eride: glycerol + 3 fatty ac-		Ester linkage be- tween carboxyl OH and glycerol OH. 2nd & 3rd held to- gether by H bpnds. Also 4th, (both isol- ogous and hetero)		OH o- ds. sol-	Fats: Long term stor- age, insulation, cush- ioning. PhLipids: bi- layers. Steroids: hor- mones and structure		
	Nucleic Nucleotides: sugar, Phosphate, OH from		Polynucleotide (2 polyNuc make up DNA)		Phosphodiester H between sugar and de phosphate st (A		Hereditary material, determine protein structure, energy (ATP, co enzymes), signaling (cAMP)						

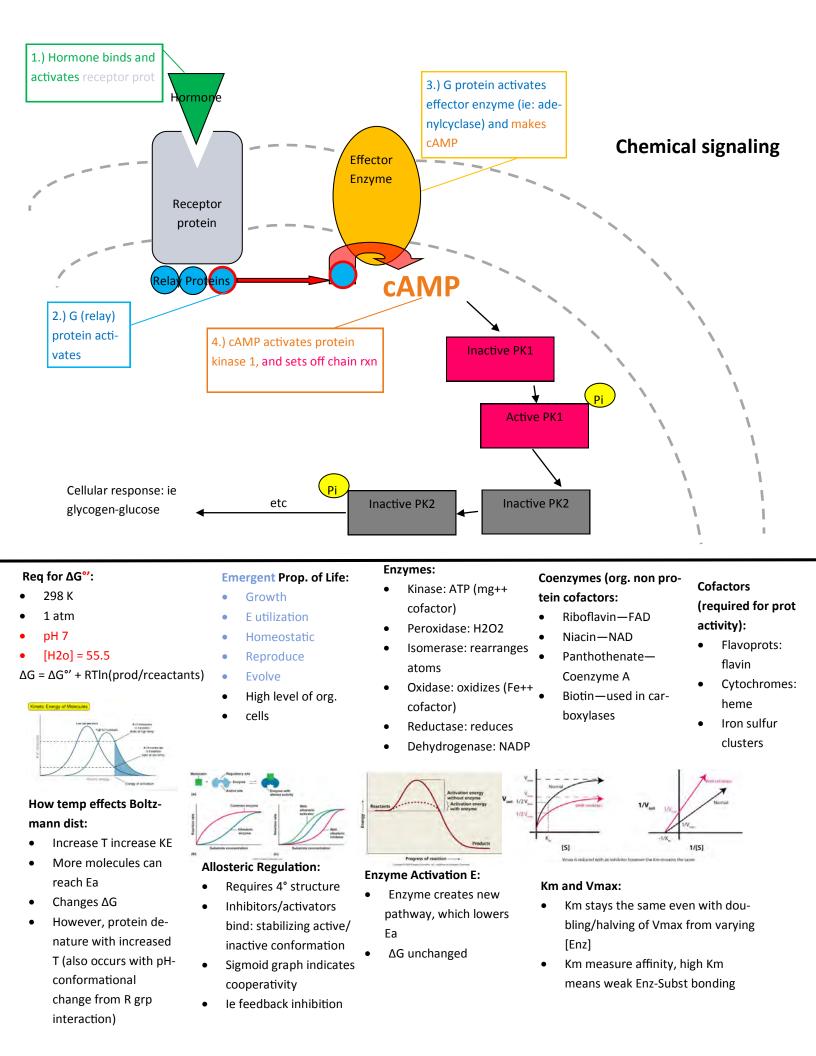
					T				
Membrane fluidity increase	Increase temp. w/o sterol: increase KE, PL can move more and become loosely packed	pack i brane Overa	ease temp with stere in as closely together e is more fluid than w all, sterol reduced an ge in fluidity	r, so mem- vith sterol.	Cis-bonds/ unsat.fats: kinks push PL apart. Come	Short FA: few teractions. St proportional cannont mov high T	rength o to dist, h	f h-bond is lowever,	Altering lipid composition to maintain homeostasis
Fluidity	luidity Increase temp with sterol: Dec		Decrease temp w/o sterol: PL move		Trans-	Long FA: mor	e hydrop	phobic inter-	Altering lipid
decrease	decrease Fluidity decreases when less		ess and become more tightly		bonds/ sat	actions. Strength of h-bond is		composition	
	compared to w/o sterol: PL	packed. Overall, sterol reduced		fats: PL	proportional to dist.			to maintain	
	bump into sterols and cant	amou	int of change in fluid	dity	closely				homeostasis
	move as much				packed				
People:							More Peo	ople:	
. copiei			Membrane Pi	rot: side tha	t faces cyt alwa	ays faced cyt	• Mer	ndel: (1st law:) i	ndividuals have 2
• Frye—	Edin: Fluid Mosaic Model		/				allel	es per gene (2nd) assort inde-
Rober	t Hooke: first to observe cell		Integral Proteins: H	ly-	Peripheral Prot: found on				tes, (3rd) one allele
Schleie	den & Schwann: wrote cell the	ory	drophbic regions er	mbed-	one side of mem, attached			ominant	
• Peter	Peter Mitchell: proposed oxidative				by weak mol. Interactions,			•	pinned eye color
phosp	horylation		, , , , , , , , , , , , , , , , , , ,		removed with salt.		 gene to X 'some Sturtevant:: recombination freq α mu 		

Sutton Boveri: 'some theory (genes on somes, assort independantly

Transmembrane Proteins: completely pass through mem. Often α helix, ie transp. prot ded in bilayer by v rem Unilateral Prot: One side of mem-

brane, covalently bonded to PL of glycoplipid

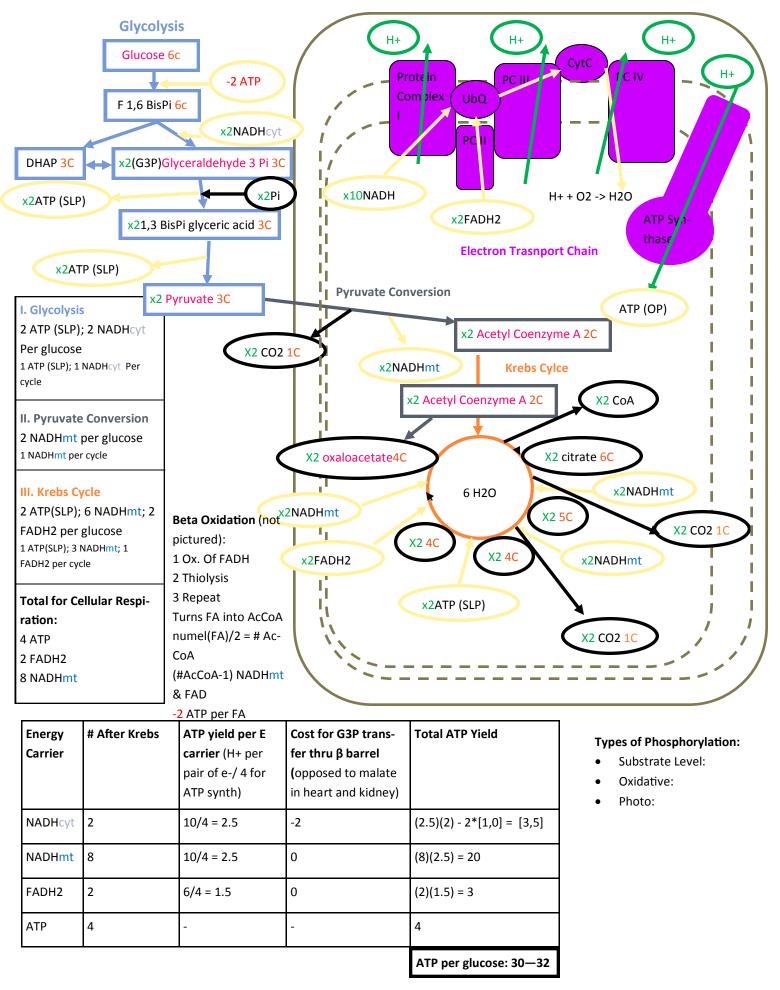
alleles per gene (2nd) assort independently into gametes, (3rd) one allele is dominant
 Morgan: drosophilia, pinned eye color gene to X 'some
 Sturtevant:: recombination freq α mu
 Griffiths: DNA = gen mat, Strep. Would uptake & express S virus
 Sturtevant:: actions, vith salt.
 Griffiths: DNA = gen mat, Strep. Would uptake & express S virus
 Chargaff: A=T, C = G
 Hershey Chase : separated & tagged prot & DNA was transferred
 Meselson Stahl; used N¹⁵ to support semi conserved model (not conservative


Genetics Ratios/Crosses: Dihybrid cross rat– 9:3:3:1; hetero TC: 1:1; homo TC: 3:1; Reciprocal Cross: same on autosome diff on sex 'some; paternal/maternal imprinting 1:1 instead of 3:1

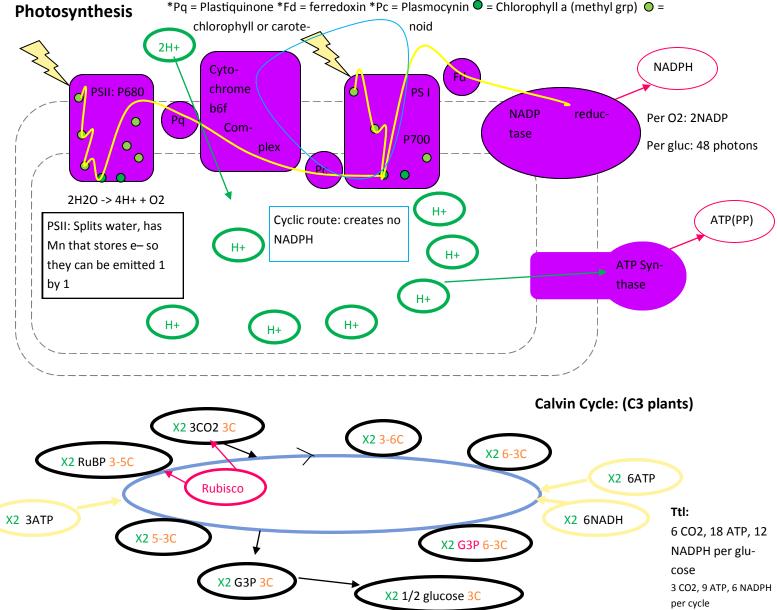
Ribozymes: (consists or

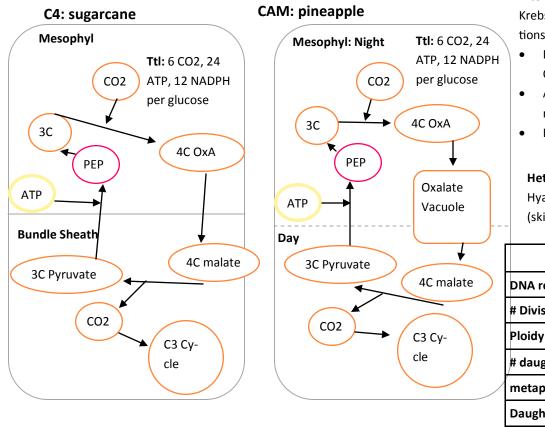
rRNA, fn as enzyme) rRNA in RSU and snRNA

or dispersive Tatum Beadle: one gene per polypep/ RNA


Simple Diffu- sion (passive)	Requires: conc. Gradient:	Requires no E	Works with small polar molecules	Ex: O2 into mt, CO2 out	things move from low to high conc.
Fascilitated Diffusion (passive)	Requires transport proteins (spec. to certain ions). Either Channel prot: gated, hydrophyll. tunnel, or carrier prot (permease) w/ binding site	No E, but can be- come saturated, or inhibited by other molecules	Works w/ large polar molecules	Ex: water channeled w/ aquaporin	Flow from low to high conc.
ATP Pumps (active- primary)	Requires carrier prot. phosphory- lation of carrier prot induces con- formational change. (Pi added to R grp w/ OH)	Requires ATP for E: creates electrical gradient		Ex: Ca ++ in smooth ER	Can go from low to high
Cotransport (active- primary)	Requires [solute 1] gradient from ATP pump for downhill diffusion of [sol 1] to carry uphill transport of [sol 2]. w/ carrier prot . Carrier prot can be symporter (both mol- ecules in same dir) or antiporter (different dir)	Requires gradient from ATP pump for E. Travels faster with both Che,. And electrical gra- dient		Ex: sucrse-H+ pump in plants, & glucose w/ Na+ from small intestine into blood. In this ex, fascili- ated diffusion also oc- curs once a favorable gluc gradient is present.	Can go from low to high
Bulk flow (exo/ endocytosis)	Requires movement of cytoskele- ton	Requires E	Works for large polar or charged particles (macromolecules)		

* Uq: ubiquinone


*CytC: Cytochrome C oxidase


Mitochondria: Cellular Respiration

Starting pt in CR:	Starting mat:	Extra Req.	NADH per cycle	FADH2 per cy- cle	ATP per cycle	Ttl ATP
Glycolysis	Sugars		1cyt + 4mt	1	1glyc+2krebs	C(12.5)+C(1.5) + C(3) - C(cyt) - 2gly
G3P	Glycerol, Carbs		1cyt + 4mt	1	1glyc+2krebs	C(12.5)+C(1.5)+ C(3) - C(cyt)
Pyruvate	Proteins		4mt	1	2krebs	C*10 + C*1.5 + C*2
AcCoA	Proteins & FA	FA +24C: Beta Oxidation_ numelFA)/2 AcCoA. Add appropriate NADPmt & FAD)	C-1 + 3mt	C-1 + 1	2krebs	NADH*2.5 + 7.5*C + FAD*1.5 + 1.5*C + 2*C - (2*FAs)
Krebs	Proteins		3mt	1	2krebs	7.5*C + 1.5*C + 2*C

*Pq = Plastiquinone *Fd = ferredoxin *Pc = Plasmocynin ● = Chlorophyll a (methyl grp) ● =

Alternate forms of respiration (no

Krebs or ETC in anaerobic conditions:

- Lactate from liver -> pyruvate. Occurs in the cytoplasm
- Alcohol fermentation: Pyruvate—CO2 -> Ethanol
- Both still include glycolysis

Heteropolysacchs:

Hyaluronic acid, D-glucuronic acid (skin/cartilage)

	Mitosis	Meiosis
DNA replicated	S	S1
# Divisions	1	2
Ploidy	NA	n,n/2
# daughters	2	4
metaphase	Somes	Tetrads, somes
Daughters	identical	different

2N = 6	Ν	с	Chromosomes	Chromatids
G1	2N	2C	6	0
G2	2N	4C	6	12
End Mei I	Ν	2C	3	6
End Mei 2	Ν	С	3	0

Plant: Diploid sporophyte –Meisosis-> haploid spore –mitosis-> gametophytes –mitosis-> gametes –fertilization-> zygote Animal: germ cells –meiosis-> gametes (egg/sperm) -fertilization-> zygote

Naming HydroC		Mitosis	Meiosis I	Meiosis II
 Count C staring from carbonyl D,L based on far- thest asym. C from carbonyl (d= right) OH on ring form of carbonyl carbon used to be double bonded O Ketose aldose Pentose, hexose, 	Prophase Metaphase Anaphase	$ \begin{array}{c} $	$ \begin{array}{c} $	$\begin{array}{c c} \mathbf{X} \mathbf{X} & \mathbf{X} \\ \hline \mathbf{X} & \mathbf{X} \\ \mathbf{X} & \mathbf{X} \\ \mathbf{X} & \mathbf{X} \\ \mathbf{X} & \mathbf{X} \\ \mathbf{X} \\ \mathbf{X} & \mathbf{X} \\ \mathbf{X} \\ \mathbf{X} \\ \mathbf{X} \\ \mathbf{X} \\ \mathbf{X} \\ $
etc	Telophase Cytokinesis		$\begin{array}{c} x & x \\ x & x \\ x & x \end{array}$	$ \begin{array}{c} 1 & 1 \\ 1 & 1 \end{array} $ $ \begin{array}{c} 1 & 1 \\ 1 & 1 \end{array} $ $ \begin{array}{c} 1 \\ 1 \end{array} $

	jective lens stage Aperture dia. Eield diaphragm	Increase size of subo the ruler, decrease of nification, and increa diameter, increase of view Coarse/fine a ntensity	ase field lepth of edj	Turn Raise Clea Mou Turn cloth Focus Set inf Close Adj. co Open of viev	image with co terpupilary dist field diaphragr ondenser until field diaphragr w	ower stage position slide so it passes through arse adj, fine adj, and diopter tance
			Undefined media	Cont quan		for growth, but in unknown
	ers/ Fromulas: G° cell resp = -686 kcal/mol		Defined me- dia	Cont	ains nutrients	for growth in known quantities
• Δ0	G° hyd. ATP = -7.3 kcal/mol G = ΔG° + RTIn(prod/rceactants)				ains nutrients es over anothe	that favor the growth of one er
• 2′	max/[Enz] = turnover (mol. Subst/s) n = possible isomers/gametes fficiency= # moles ATP X 7.3 /# kcal	released/mol subst			v organisms to e or color	show phenotypes like colony
(e la - pH - 2. - 1/ - NH - Se - UH 2r	e.g., glucose) pg(I/Io) = clz H = pKa + log([A-]/[HA]) 4/(V2-2.4) = Vx/5 $74^5 = 1/10^3$ umber of gametes: (#perm parents) et) nitl length DNA = Num templates * (E • ^(# somes in a	Add enzyme, Add enzyme, minutes (for rxn) Add DNS (to s with aldehyd Heat (to mak cipitate appe	starc enzyn stop r e in li e DNS ar. nk = s	ne to catalyze xn– interacts near form) 5 maltose pre-	 Hill Rxns: Dark control: to make sure procedure is correct Light control: compare to normal behavior Meth: acts as a pH buffer to minimize changes in proton concentration of the lumen DCMU: block electron transport between PSII and PSI
PCR	Fluorescent ddNTP Seq	Radioactive prime	r Seq		DNA ladder	
2 primers (F	1 primer	1 radioactive prime	er		0 primers	

2 primers (F R)		1 primer	1 radioactive primer	0 primers				
2 rxn tubes		1 rxn tube	4 rxn tubes	1 tube				
Taq, buffer, 4		, 4 Taq, buffer, 4 dNTPs, 4 fluor. Buffer, Taq, 4 dNTPs, 1 ddNT		Loading dye	OD			
Paralog	ove	er and recombination so that you er	came about from a mistake in meiosis, und up with more than one copy of a gene Genes specialize overtime (divergence)	•	g			
Ortholog	holog are homologs and due to a speciation event, you end up with the same gene in different spe-							
Homolog	are	e genes that came from one original	gene, share common ancestor.					

Time

PCR temp: denature > extension > annealing

Fluorescent or radioactive dNTP	4 rxn tubes	Problem: first base won't show up on gel, end strand for short template will show up
Fluorescent or radioactive primer		All bases that terminate and are long enough will show up (including end strand in short template)
Fluorescent ddNTP	1 rxn tube	Final strand, even in short template, will only show up for the last base

	1						
DNA		g template strand and coding non-template ntains promoter for binding RNA	Introns,No poly A tail or ca	ap, no UTR			
pre-mRNA	Same as n	on-template, but with U's	Introns,No poly A tail No U				
Mature mRNA			No introns,Ploy A tail and 5	5' cap,5' and 3' UTR	Shorter than "		
rRNA	Ribosoma	l, sometimes makes ribzyme					
tRNA	. ,		Has anti codons compleme for wobble, and sometime	80 bp long			
SRP RNA	Takes free particle	ribosomes to RER, component of signal rec.					
snRNA	RNA (small nuclear), fn as ribozyme, processes RNA so it can pass through pores			part of snRNP along with protein			
siRNA	Small inte	rfereing RNA	Helps degrade/ block viral	DNA			
miRNA	Micro RNA	A	Helps degrade/ block mRN	A that we don't want to be translated	22 bp		
Xist RNA	X inactivat	ion specific transcript	Coats 'some and recruits m	nethylases for X inactivation			
Complete Dom	inance	P/p = purple, p/p = white	Mendelian peas	One phenotype or other, doesn't apply to co monality or survivability			
Incomplete Dor	minance	R/R = red, R/R' = pink, R'/R' = white	Snap dragons	Blending of phenotypes			
Codominance		$I^{A}/I^{A} = A, I^{B}/I^{A} = both, I^{B}/I^{B} = B$	Blood type	Both phenotypes equally			
Epistasis		C/C;P/P	complimentation	Expresses whatever whatever enzymes it makes in the pathway			
Epigenetic		Maternal: a ^{+meth} /a; will express a even though a+ is dominant. Methyl- ation will be removed in both male, and conserved in both female gam-	Calico cats	Change in phenotype, no change	in seq.		

DNA/RNA Regions:

Origin of Replication: where bubble forms in replication

- Promoter: in DNA, control region for gene switch, contains site where RNA attaches, and init site where scription begins. In EuK, TATA box for TATA TF
- EuK: 5' cap: increases t1/2 of RNA and prevents degredation, aids in binding 5' UTR in slation
- Intron: noncoding region of RNA removed by spliceosome in RNA splicing
- Prok: control region consists of operator and promoter
- Prok: operon is control region and structural genes
- 3' UTR, binds proteins for degradation
- 5' UTR: ribosomes bind here

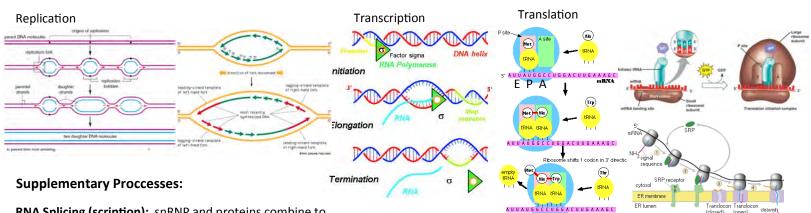
Signal Amp:

- Many RNA poly work simultaneously
- Many ribo translate same mRNA to form polyribo

Bacterial Protection:

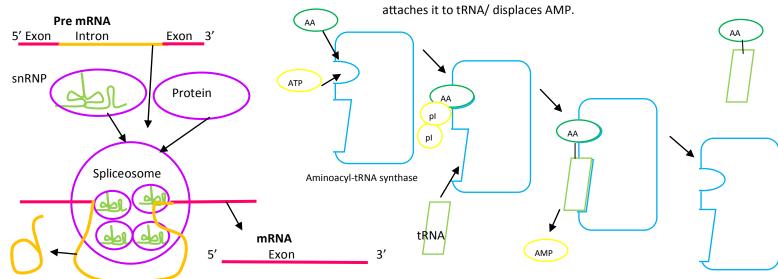
- Mutate receptor site used by virus to enter cell
- Restriction enzymes: cut up DNA, and create palindromic sticky ends
 Methylate own DNA binding
 - Methylate own DNA binding site to protect against RE

Things that happen in nuc vs cyt


- tRNA made
- euK, ribosomal subunits assembled.

Everything in a proK

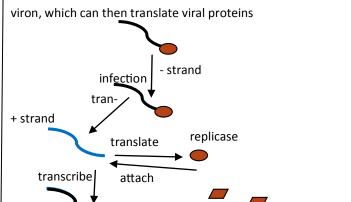
- Slation
- Scription
- Splicing
- miRNA (pri -> pre)
- siRNA


- Types of Mutation:
 Aneuploidy: too man
 - Aneuploidy: too many copies of a some
- Subst: replace base, pt, can be silent, or missense (diff AA), nonsense (stop), or sense (not stop), exon -> intron or intron inclusion
- Deletion/insertion: pt, CAN result in frameshift -> dead prot, immediate nonsense, massive missense, or +-AA
 - Less meaningful in RNA

	Initiation	Elongation	Termination	Fun Facts
DNA—DNA (replication)	Helicase unzips, topoisomer- ase relieves tension, RNA pri- mer attach to complementary seq at origins (100's) of repli- cation by DNA primase. In both directions for both strands	DNA poly 3 anneals to 3' end & forms replication fork (leading strand). Lagging strand annealed with multiple primers and Okazaki fragments (100-200 bp). DNA poly 1 removes RNA primer and fills with DNA(attaching to OF in back), DNA ligase seals backbone (costs 2 pi)	Bubbles meet.	One mistake in 1 bil- lion bases. Very accu- rate. If DNA primase were used, accuracy would decrease due to use of non permanent RNA
DNA—RNA (transcription)	General TF bind to promoter, RNA poly (many at once) 2 binds and anneals on one strand in one direction	RNA polymerase seperates strands and links NT, RNA peels from template	RNA continues until it reaches a terminator sequence. In EuK, often AAUAAA	Since this process is self starting, it has low accuracy
RNA—Protein (translation)	Small RSU binds 5' end of mRNA, tRNA binds to start codon (AUG) with GTP cost and initiator factors, large RSU binds, initiation factors re- leased, tRNA in P site, initiator complex complete	Codon on tRNA recognized and binds (GTP cost required), pep bond formed between A sire and P site (catalyzed by peptidyl transferase), as ribo move 5' to 3', t&mRNA in A move to P, tRNA in P to E, GTP hydrolysis	Termination codon (3) enters A site, release factor binds stop codon and hydrolyzes bond between polypep and tRNA in P. polypep & tRNA leave ribo, RSU dissociate	Ribo binds to RER with Signal Recognition Particle and feeds pro- teins into membrane bubble (first AA zip- code). EPA order of sites. 3 different stop codons

RNA Splicing (scription): snRNP and proteins combine to form spliceosome, which attaches exons and expels looped introns to be degraded

tRNA/AA attachment (slation): Aminoacyl-tRNA synthase (specific to AA and tRNA) activates AA w/ ATP hydrolysis, and attaches it to tRNA/ displaces AMP.

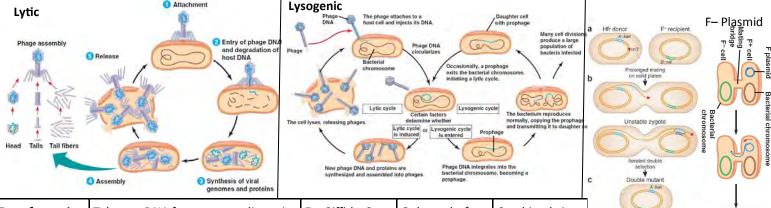


RNA Viruses

Positive strand: one gene encodes for DNAdependent poly (replicase), transcribe to strand, transcribe + stand, translate to viral proteins

- strand translate transcribe translate translate translate translate translate translate translate translate translate translate

Retrovirus: type of positive strand DNA that reverse transcriptase as its replicase, which works for either RNA or DNA, which can be inserted into the host (HIV)



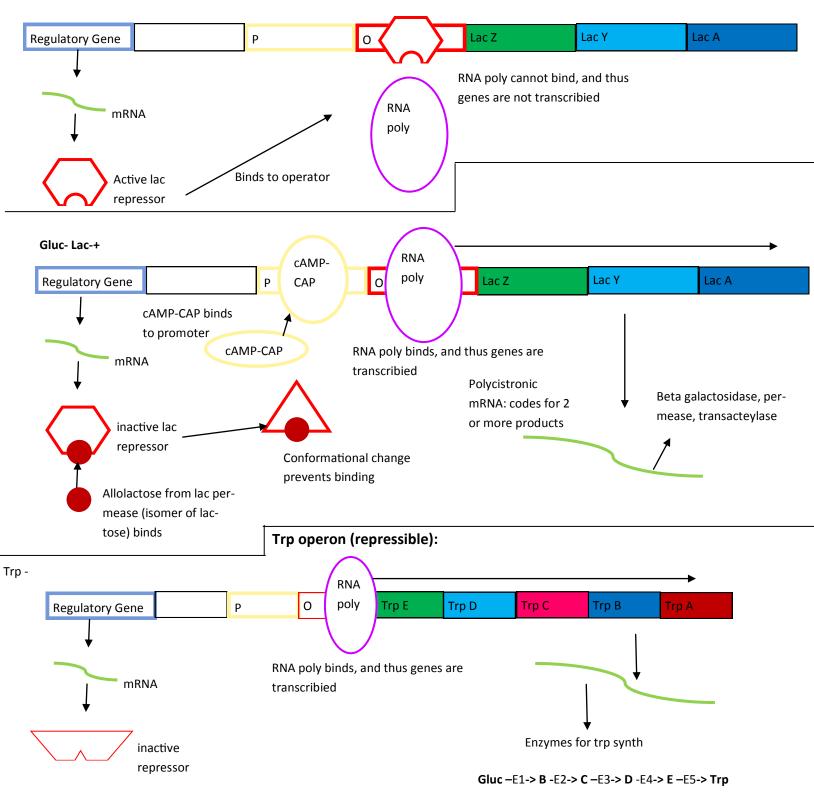
translate

Negative strand: replicase(initially from host cell) is packages in

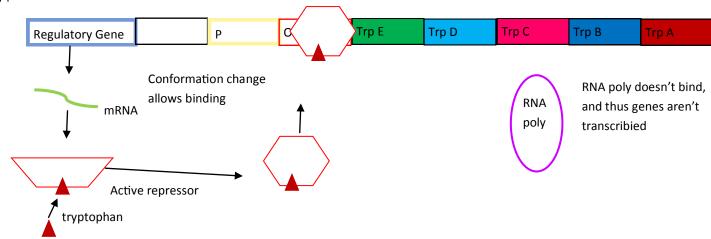
Virus Reproduction

Lytic	Т4	Causes the	nage attaches, injects DNA (ATP cost), host transcribes and translates DNA, one of the					
	phage	death of	rst proteins destroys the host DNA, cell makes pahges, phages assemble, lysoszymes					
		the host cell	eak down cell wall co					
Lysogenic	Lamb-	Not deadly	inds to surface, injects DNA, forms circle, inserts itself (prophage) into host chromosome					
	da	in itself, but	prophage makes prepressor protein which turns off other prophage genes, prophage					
	phage	can start	assed on ti daughter cells, under proper conditions, genes activated and cell goes lytic.					
		lytic phase						

Transformation	Takes up DNA from surroundings via surface receptor	Ex: Giffiths S and R strains of Streptococcus	Only works for closely related species	Combined via crossing over	O w
Transduction	Transfer of DNA via bacteriophage that accidentally got bact DNA in- stead of viral DNA			0	as th cc O m
Conjugation	Direct transfer of DNA through sex pilus (formed by gene on F plasmid, cytoplasmic bridge)	F (or R re- sistance) plas- mid	Only works between F- and F+ varieties	Recombination between recipi- ent F– cell and HFR fragment	fr er fir


One strand of DNA will turn clockwise as it enters F– cell, the other will turn counter clockwise. Only half of F plasmid transferred from HFR cell, 3' end always enters first. C

Viral proteins


Increase in lac	Beta galactosidase up	eta galactosidase up Lactose permease No e			w/ cAMP conf. change in
		up		CAP turns on gene	LAC repressor
Increase in gluc	Low beta galacto- sidase	Low lactose per- mease		w/o cAMP-CAP Lac re- pressor binds and turns off	

Lac operon (inducible)

Gluc+ Lac-

Proteins common to all euk cells:

- Structural prot of chormosomes (histones)
- RNA poly
- Cytoskeleton
- Cell Resp. enzymes
- DNA repair enzymes
- EuK gene reg before scription:
- Hist acetylation
- Hist methylation
- DNA methylation

Genomic Breakdown

- 20-30% expressed
- 44% repetitive elements (like transposons)
- 1.5% exons
- 5% introns
- 20% regulatory seq
- 15% unique noncoding DNA
- 14% repetitive DNA unrelated to transposons
- 10% Alu elements: similar to srpRNA, likely added to genome by retrotransposon

EuK gene reg after scription:

- Processing (splicing)
- Delay export (nuc to cyt)
- Delay localizatio once in cyt (3' UTR)
- 300nm T1/2: remover/ shorten poly A tail

Stages of

DNA folding

10nm

30nm

1400nm

•

- 700nm and 5' cap, proteins bind to 3' UTR
 - to remove cap, or degrade mRNA

Regulation at level of slation:

- Prevent ribosome from binding to 5' UTR
- Add Pi to inactivate init factors and prevent init complex from forming

Histone acetylation	reversible	Loosens histones	Any AA		
Histone methylation	Can be passed on to progeny	Mostly represses transcription, can activate it	H3K27, some arg & H3K4 (activation)		
DNA methylation	Permanent, always inherited	Always repressive			

Area in DNA seq	TF	Fun Facts	Location
Promoter	Gen TF	Steroid receptor complexes can act as TF, phosphorylation cas-	Right before gene seq
Enhancer	Specific activators/ repressors	Sim to operons, made of control elements, can help assemble init. Complex, can cover binding site for sctivator, can mask acti- vation surface of activator, can bind to TF to push enhancer away, can recruit acetylases	Far away
Silencer	repressors	Sim to operons, made of control elements,	Far away

Transposon	Cut paste	Codes for integrase and transposase	No change in copy #	After it's been replicated, transposase cuts out transposon, integrase inserts it somewhere else in the transposon elsewhere
Retrotransposon/ Long inverted terminal repeats (viral)	Copy paste	Codes for reverse tran- scriptase	Increase in copy #	Reverse transcriptase enzyme made in the cytosol, RT goes into nuc, transcribes RT mRNA into ds DNA retrotransposon, integrase (made by cell) inserts

miRNA	siRNA
Pri-miRNA — Droasha —> pre-miRNA	
In Nuc	
In cyt	In cyt
Pre-miRNA —Dicer—> ds miRNA —binds Argonaute—> RISC	Ds RNA —Dicer—> ds siRNA —binds Argonaute—> RISC
RISC = RNA Inducing Silencing Complex (ss miRNA+ Argonaute), RNA binds to 3' UTR, Argonaute degraades	RISC = RNA Inducing Silencing Complex (ss siRNA+ Argonaute) RNA binds to 3' UTR, Argonaute degraades

Transposon	 Post-slational controls: Phosphorylation
insertion	Change quarternary struct
Retrotransposon	 Enzymatic cleavage (zymogen) Change cofactors Tag w/ ubiquitin Cleave peptide bonds
(b)	

cDI	NA Library	Genomic Library			
1.	Starting Mats: plasmid with Lac Z gene containing multiple coupling site, and AmpR gene (resistance to ampicillin), and human RNA from tissue specific cell (ie for insulin, need pan- creatic cell) Process for Obtaining tissue specific DNA: obtain RNA w/	1. 2.	Starting Materials: plasmid with Lac Z gene containing multiple coupling site, and AmpR gene (resistance to am- picillin), and human DNA from any cell Process: Cut both with same restriction enzyme so sticky ends will be complementary (ie, EcoR1)		
3. 4. 5.	poly A tail from cell Add poly G/C string to the 5' end of RNA with T4 ligase Create poly T DNA primer, and use reverse transcriptase to create complementary DNA Increase PH to destroy RNA (not DNA) and increase heat to	3. 4.	Mix two together DNA ligase will seal sticky ends. This includes sticky ends of plasmid to itself (no insert) and sticky ends of insert to plasmid (what you want) creating two classes of plasmid. Source DNA can also anneal to itself, but these pieces won't have an effect		
6. 7.	denature RT Treat gene with EcoR1 methylase to methylate EcoR1 (or other enzyme) binding site within gene Add linkers (ds DNA w/ blunt end) containing binding site for	5.	Mix solution with culture of E. coli (don't have ampR gene initially), and let transformation occur 3 classes of bacteria created: bacteria with out any recom- binant plasmid (no transformation, majority in this class), bacteria with recombinant DNA but no insert, and bacte-		
8.	enzyme to poly A/T side and to poly C/G side. Now EcoR1 will selectively cut out gene Treat with EcoR1 to cut out gene	7. 8.	ria with recombinant DNA and insert. Plate on selective media with ampicillin and x-gal (sim to lactose, turns blue when processed by beta galactosidase Amp kills non transformed bacteria, bacteria without in-		
ma	Start with step 2 for genomic libraries. NA libraries can be used to actually produce protiens for hu- n use from bacteria. Genomic libraries cannot, because the A used has introns, which the bacteria cannot remove.	Wa	sert (with intact Lac Z gene) will be blue, and those with intert (what we want, interucpted lac Z gene) will be white Every white colony has different human gene Replica plate white colonies, lyse cell, bake, sh with radio active probe complementary to gene you nt. The spots that develop on the film can be mass pro- ced		

		Cnida	rians		Platy	Platyhelminthes Annelid			Mollus		isca		
How eat		GVC			GVC			Complet	Complete GI tract		Complete GI tract		
Nitrogenc	Nitrogenous waste NH3					Urea/uric acid on land, Meta- nephridia , osmoconformer			NH3/uric acid, nephridia				
Reproduc	tion		ial & Sexu ous or dio	-	Asexu noeso	ual & Sexual, mo- cious			& Sexual, mono aete dioescious)			y Sexual, dioe opada monoe	
Respiration Body surface				Body	surface	Body surface (earthworm) , pol- ychaete (featherduster) breath through feathery structures		Ctenidia, (land snail uses mantle cavatiy)		il uses			
Circulatio	hemoglobin respin				respir	Open, Cephalopods closed, respiratory pigment hemo- cyanin							
Digestion		Gastr	ovascular	Cavity	GVC			complet	complete GI			lete GI	
Cephaliza	tion	N/A			Selec	t species	species yes			Yes			
Nervous s	system	Nerve	erve net N		Nerve ladder		Ganglia	Ganglia and ventral nerve cord		Cephalopods have highly developed nervous system (axon 1 mm thick)			
Skeletal		GVC f	luid hydro	olic	hydro	olic		hydrolic	hydrolic		Exoskeleton		
How mov	e	Medu	ısa form n	nove	musc	les		Muscles	Muscles in body wall		Scallops move with adduc- tor muscle, others move with foot		
	Gastropo	d	Bivalve	Cephalo	pod Polyplacophore			Germ Layers	Tissues		Ceolom	Digestive opening	
Mantle	e yes yes Yes yes C		Cnideria	2 (ecto/	2 (gastrie	c and	N/A	1					
Radula	yes no yes			yes			endoderm)	epithelia	1)				
Foot	yes		yes	Foot —> head		Yes	Platyhel-		3	4		Aceolmate	1
Ctenidia	Not land s	nail	yes	yes		Yes	┢	minthes	(+mesoderm)				
Shell	0/1		2	0/1		8	4	Annelids	3	4		Ceolomate	2

Chordata:

- Pharyngeal gill clefts
- Notochord (underlies nerve cord)
- Single, hollow dorsal nerve cord
- Presence of a post anal tail

Blood flow:

- Right atrium
- Right ventricle
- Pulmonary arteries
- Pulmonary capillaries
- Pulmonary veins
- Left Atrium
- Left Ventricle
- Systemic arteries
- Systemic capillaries
- Systemic veins
- Right atrium

Firsts in development

- First true tissues: Eumetazoa (porifera doesnt have them)
- 3 germ layer: **Bilateria** (radiate has 2)
- Cephalization: platyhelminthes
- Acoelomate: Platyhelminthes (turbellaria)
- Ceolom (first studied): annelida
- First (studied) GI tract: annelid
- First (studied) close circulatory system: annelida

Populations:

Mollusca 3

- Porifera: 6,000
- Cnidarian: 10,000
- Platyhelminthes: 20,000
- Annelida: 15,000
- Mollusca: 100,000
- Echinodermata: 7,000
- Arthropoda: millions

Mesoderm:

- Notochord
- Skeletal system
- Muscular system
- Excretory system
- Circulatory system
- Lymphatic system
- Reproductive system

Ectoderm:

Skin

4

- Nervous system
- Sensory receptors

Endoderm:

• Epithelial lining of digestive and respiratory tract

Ceolomate 2

- Liver pancreas and thymus
- Lining of excretory and reproductive system

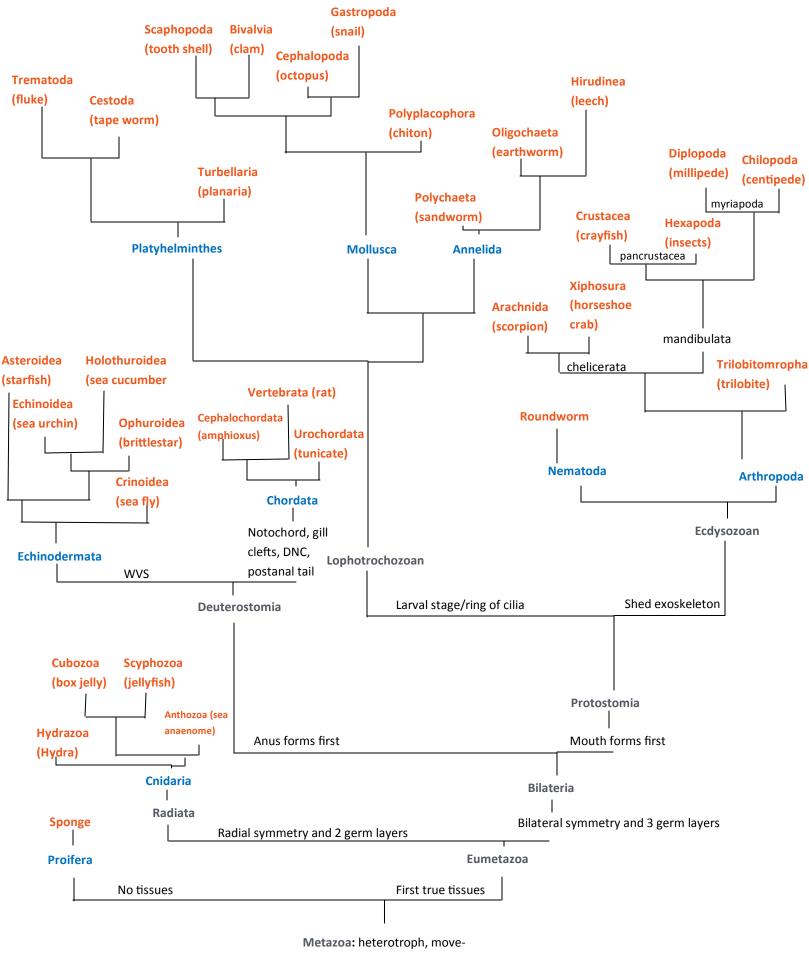
Meroblastic: chicken Holoblastic: urchins, frogs, sand dollars

	Cnidaria	Platyhelminthes	Annelid	Mollusca	Chordata	Echinodermata	Arthropoda	Arthropoda
	Hydra	Planaria	Earthworm (Oligochaeta)	Clam (Bivalvia)	Rat (rattus)	Starfish (asteroidean)	Cockroach (hexapoda)	Crayfish (crustacea)
Skeleton	hydrolicl	hydrolic	hydrolic	Shell created by mantle	Endoskele- ton (CaPi)	Endoskeleton: pro- tein and Ca salts	Chitin exo- skeleton	Chitin and CaCO3 salt
Kidney/ Fluid		Protonephridia, Filters interstitial fluid	Metapne- phridia/ he- moglobin	Nephridia, hemocyanin	Kidney, hemoglo- bin	Osmoconformer, hepatic caeca, re- lease NH3 through skin	Malpighian tubes (uric acid) hemo- lymph	Green gland (NH3), he- mocyanin
Storage			Glycogen & fat		Fat, glyco- gen in liver	Hepatic caeca (fat/ glycogen)	fat	Gastrolith for Ca
Crop	GVC	GVC	crop	stomach	stomach	Cardiac/pyloric stomach	crop	Cardiac/ pyloric stom- ach
Gizzard	GVC	GVC	gizzard	Radula/ stomach	Teeth/ stomach	Sea urchins have teeth	Gizzard	Gastric mill
Digestive Gland	Gland and nutritive muscle cell	Gastrodermis	intestine	Digestive gland	Pancreas/ salivary gland	Hepatic caeca/ car- diac stomach	Digestive caeca	Digestive gland
Main Ab- sorbtion	Gastroder- mis "	gastrodermis	intestine	Digestive gland	Small intes- tine	u	midgut	Digestive gland
Lungs	Body surface	Body surface	Body surface	ctenidia	lungs	Dermal papillae	tracheoles	gills
Circula- tion	GVC	GVC	Pseudoheart, closed	Heart, open (except ceph)	Heart, closed	Water vascular sys- tem, open	Dorsal vessel, open	Heart & Os- tia, open
Nervous	Nerve net	Nerve ladder	Ganglia & ventral nerve cord	Cephalopods developed nervous sys- tem	Brain	Ventral nerve cord	Ventral nerve cord	Starburst shaped

	Protostome	Deuterostome	Schizocoelous Blastocoel Blastocoel Ectoder
Cleavage	Spiral (diagonal division)	Radial (half division)	Endoderm
	Determinate (no twins)	Indeterminate (twins)	(embryonic gut) Blastopore mesoderm cells Enteroscoelous Blastopoel
Ceolom Formation	Schizocoelus: Coelom formed by splitting the mesodermal tissue	Enterocoelus: ceolome is pinched off the mesoderm	Early Recodern Archanteron (embryonic gult)

Dates:

- 14 bill ya: universe formed
- 5 bill ya: formation of earth
- 4 bya: first life
- 1 bya: split with fungi
- 800 mya: first animals
- 550 mya: chordates
- 530 mya: Cambrian explosion
- 200 mya: mammals


Extraem	bryonic	Membrane	s
---------	---------	----------	---

- Chorion membrane: surrounds everything
- Yolk sac: surrounds yolk, helps uptake nutrients
- Allantoic membrane: buds off midgut, stores nitrogenous waste, eventually fuses with chorion
- Amniotic membrane: immediately surrounds embryo, cushions and prevents dessication

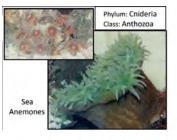
Orientation:

- Ew: Ventral nerve cord
- Clam: anterior short end/foot
- Chick: notochord dorsal
- Fly tracheoles: dorsal

Monoescious	Cnidarian (lab hydra)	Annelida (ew)	Platyhelminthes	Gastropod			
Dioescious		Ploychaeta		Mollusca clam	Urchin, starfish	crayfish	roach
Asexual	Cnidarian (hydra)	Annelida	platyhelminthes				

ment, multicellular, collagen

Porifera



Fun facts:

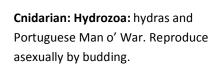
- Suspension feeders
 - Choanocytes contain flagella that beat water into the cavity, and out another opening
 - Food ingested by phagocytosis
 - Ameobocytes move food and produce skeleton

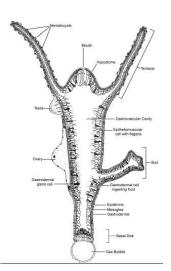
Cnidaria

Sed Allemones

Cnidarian: Anthozoa: Corals and anenomes.

Cnidaria facts


- all have radial symmetry.
- Two body plans: polyp (sessile) and medusa (mobile).
- Flagella beat food into GVC, where proteases digestepidermis (ectoderm), mesoglea, gastrodermis (endoderm)
- Cnidocytes sting with nematocysts
- Nerve net, but no cephalization

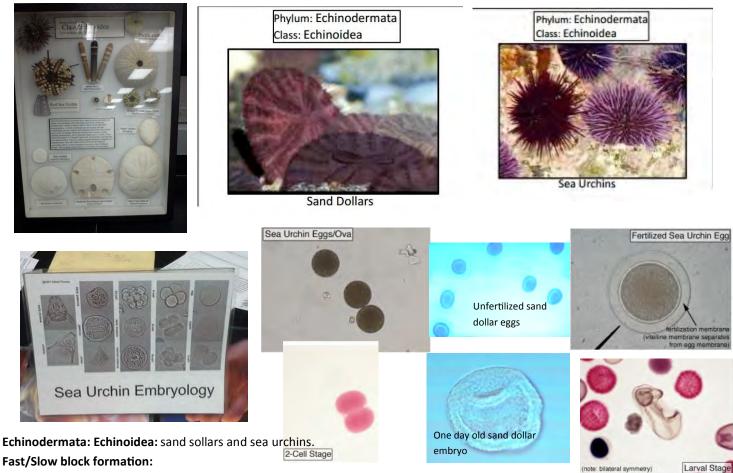

Hydra

acles (cnidocytes are ger rounded cells)

Oral End

• Coral have symbiotic relationship with zooxanthellae

Class Hydrazoa



Basal End

Hydra - long sections, gonads

GVC

Echinodermata

- Fast addition of Na+ -> rapid depolarization. This is the fast block. It only lasts a couple of minutes
- Sperm hydrolyze jelly coat. Calcium increase triggers the slow block. Vesicular contents are released into the perivitelline space, which creates space between the egg cell membrane and the vitelline membrane. Enzymes harden the vitelline membrane and it becomes the fertillization membrane

Phylum: Echinodermata

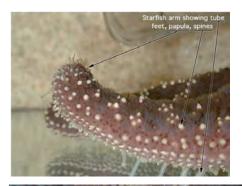
Sea Cucumbers

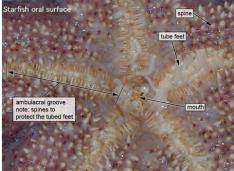
Echinodermata: Crinoidea —> Holothuroidea & Echinoidea

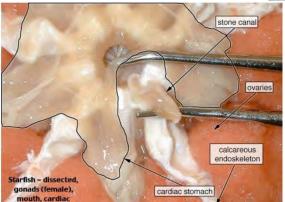
Phylum: Echinodermata

Starfish

Phylum: Echinodermata





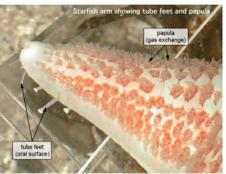


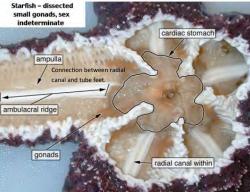
Echinodermata Fun Facts:

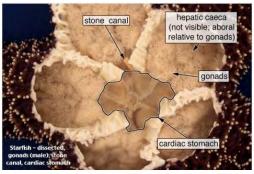
- bilateral symmetry in larva, •
- Asexual reproduction via regeneration
- Water vascular system unique to phylum, ampullae contract as water is brought to them, which causes the stretching of tube feet

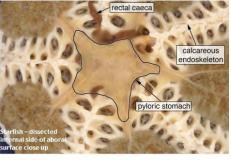
mouth, cardiac stomach, stone cana

made

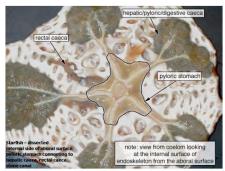

Sieve like opening to WVS

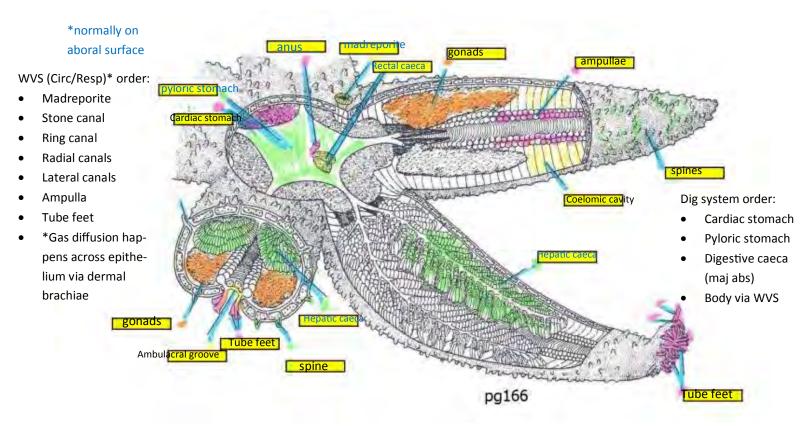

ambulacral ridge

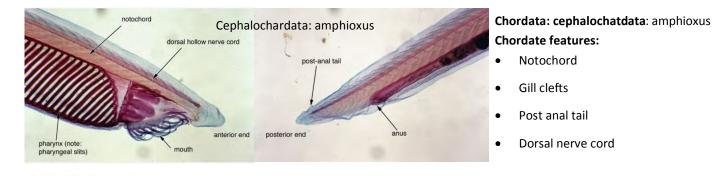

Starfish - female

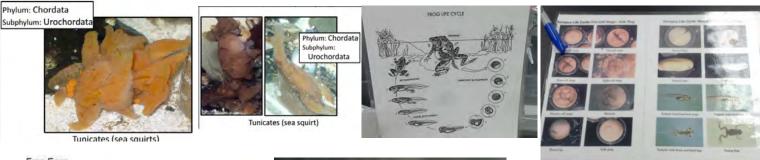

à.

cardiac stomach

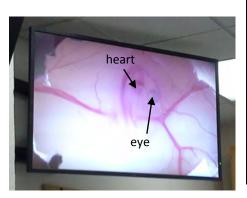


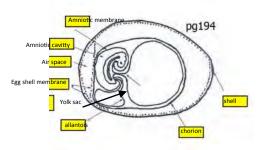


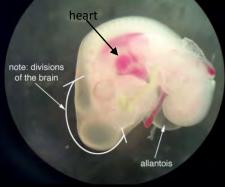


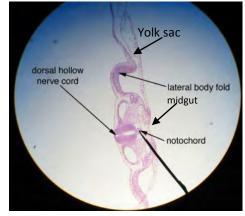

ovaries

Chordata

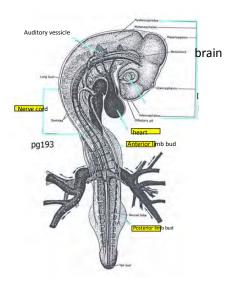

(8 cell) note: unequal cell sizes, holoblastic cleavage

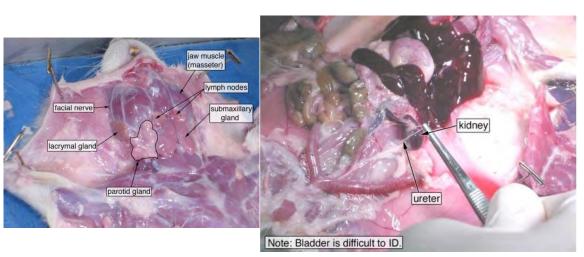

Frog, xenopus laevis, Facts:

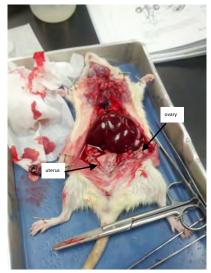

- Ovum –. 2 cell -> 4 cell -> 8 cell -> merula -> blastula (blastocoel inside) -> gastrula (formation of yolk plug, blastopore and archenteron) -> nerula (form neural plate and notochord)
- Vegetal pole lighter in color, with bigger cells

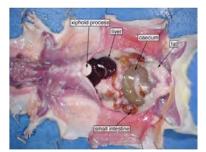


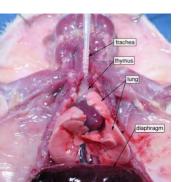
Chicken Fun Facts:

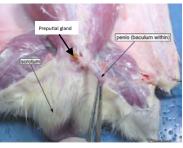

- Meroblastic cleavage (large yolk)
- Allantois stores uric acid

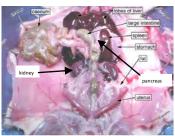








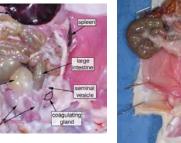


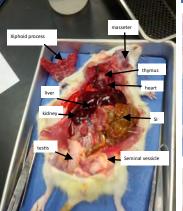


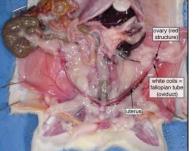


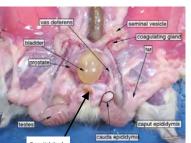

Lymphatic Order:

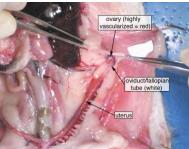
- Lymph vessels return interstitial fluid to circ system
- Spleen filters blood (w/ lympho and phago cytes), destroys/ stress RBC


Excretory Order:


- Blood enters via renal • artery at medial depression
- Nephrons (form urine) •
- Ureter
- Bladder
- urethra


Resp Order:

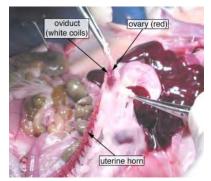

- Larynx,
- laryngopharynx,
- Trachea
- lungs


Dig Order:

•

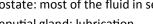
- Pharynx (liquid from • parotid ducts)
 - Esophagus
- Stomch (HCI) •
- **Pyloric sphincter** •
- Duodenum (liver/ pan-• creas-dig enzymes and bicarbonate)
- Jejenum
- Ileum
- Caecum (breakdown
- cellulose)
- Large intestine
- Rectum
- anus

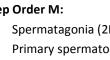
Rep Order M:

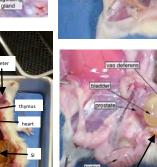

- Spermatagonia (2N 2C)
- Primary spermatocyte (2N 4C)
- Secondary " (1N 2C)
- Spermatid (1N 1C)
- Spermatazoa (1N 1C)
- Caput epididymis •
- Cauda epididymis •
- Vas deferens
- Ejaculatory duct •
- Urethra •
- Through follicular cells to ovum, or stopped by zona polusida

Glands

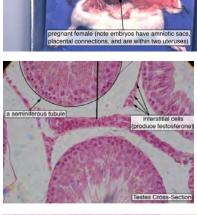
- Coagulating: copulatory plug
- Seminal vesicle: fructose to in-• crease motility and viability
- Prostate: most of the fluid in semen
- Preputial gland: lubrication

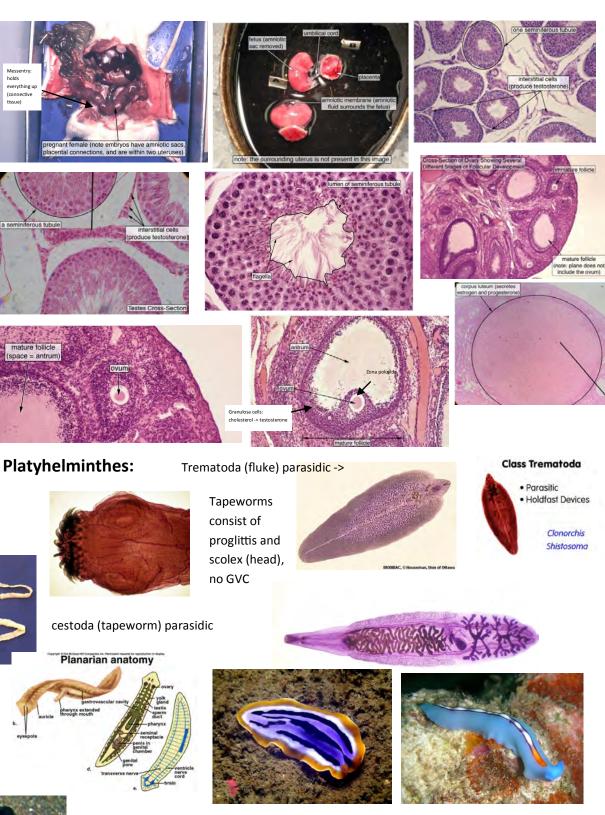


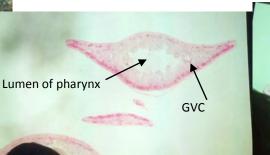


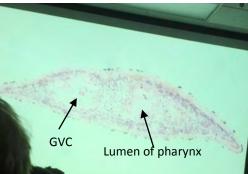

Rep Order F:

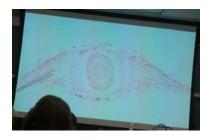
- Oogonium (2N 2C)
- Primary oocyte + polar body (2N 4C), growing follicle
- Secondary oocyte + polar body (1N 2Creleased during human ovulation), mature follicle
- Ootid (in rats) 1N 1C
- Ovum (1N 1C), corpus lutenum
- Ovary
- Fallopian tube/ oviduct
- Uterus

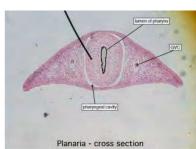



Fun Facts:


- Growing follicle is a cou-٠ ple cell layers think, immature is only one
- Sertoli cells: make barrier between blood and sperm, and convert testosterone -> DHT
- rats have esterous (as opposed to menstral) cycle, females are only receptive to mating at certain times
- F: thecal cells: testosterone -> estrogen






Tubellaria: free living scavengers, imitated by nudibranchs, brightly colored but not poisonous. Asexual reproduction via regeneration

Phylum: Mollusca Class: Gastropoda

Platyhelminthes fun facts:

- Acoelomate
- Cephalized
- Contain protonephrdia with flame cells for gas exchange

Mollusca

Nudibranchs

Chitons

Phylum: Mollusca Class: Gastropoda

Snail

Nudibranchs (sea slugs)

Phylum: Mollusca

Class: Gastropoda

Gastropoda Fun Facts:

- Limpets, snails, nudibranchs, abalone
- Some are shell-less . Land snails produce uric acid and don't have ctenidia

Cephalopod Fun Facts:

- Foot in head region
- Nautili have shells and don't ink

chiton

Some don't have shells •

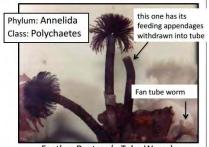
Chiton (Polyplacophora) **Fun Facts:**

- 8 shells, but some-• times hidden
- Eat algae

nudibranch

Class: Polychaetes

Feather dusters breath through


Fan Tube Worms Polychaeta:

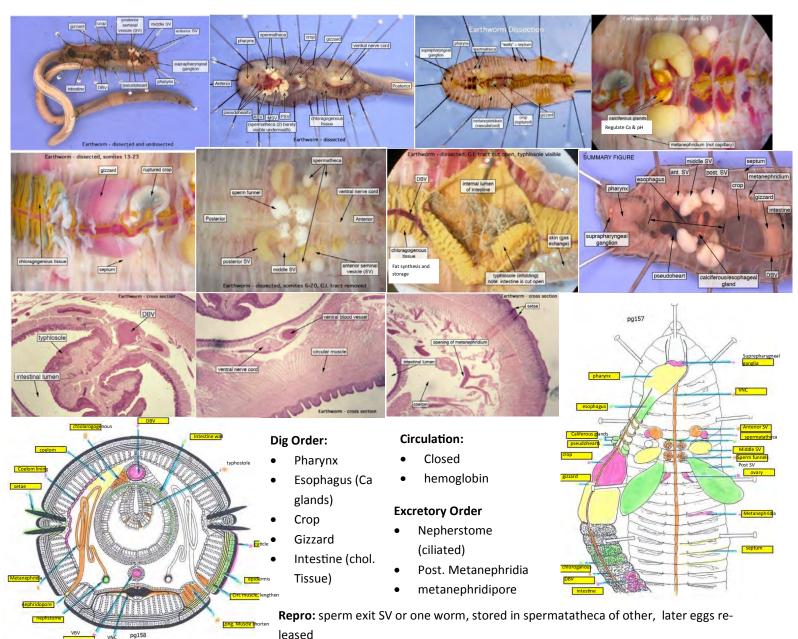
Marine

feathers

•

• Visceral mass houses nephridia for excretion

Feather Dusters (a Tube Worm)



Annelida:

- Segmented worms (obvious metamerism)
- GI SA increased with typhlosole
- Metanephridia, hemoglobin
- Asexual budding, sexual monoescious
- Earthworm External Anterior Cittellum DBV

Hirudinea:

leeches

leased

Nematoda: pseudoceolomate

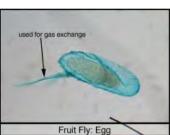
VNC

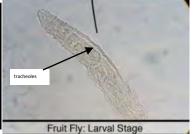
Chelicerata:

- Xiphsura & arachnida
- Chelicerae
- Book lungs in spiders

Horseshoe crab

- Cylindrical Body Tapered at Both Ends
- Unsegmented Pseudocoelomate


Mandibularia: myriapoda



Pancrustacea: hexapoda

Hemimetabolous:

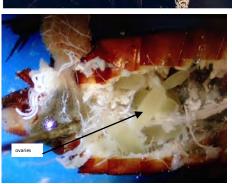
- Egg to nymph •
- Grasshopper •
- Mini version of adult •

Holometabolous:

- Egg to larva
 - fly

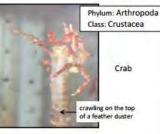
•

Larva look different


Dig. Order:

- Esophagus •
 - Crop
- Gizzard (salivary glands)
- Dig. Caeca
- lleum
- Colon
- anus

Resp Order:


- Spiracles •
- Trachea
- body

Circ/ Exc: open, hemolymph and amoe-Malpighian tubes bocytes, no pigment. Filtered in malpighian tubes and emptied into hindgut

Pancrustacea: crustacea

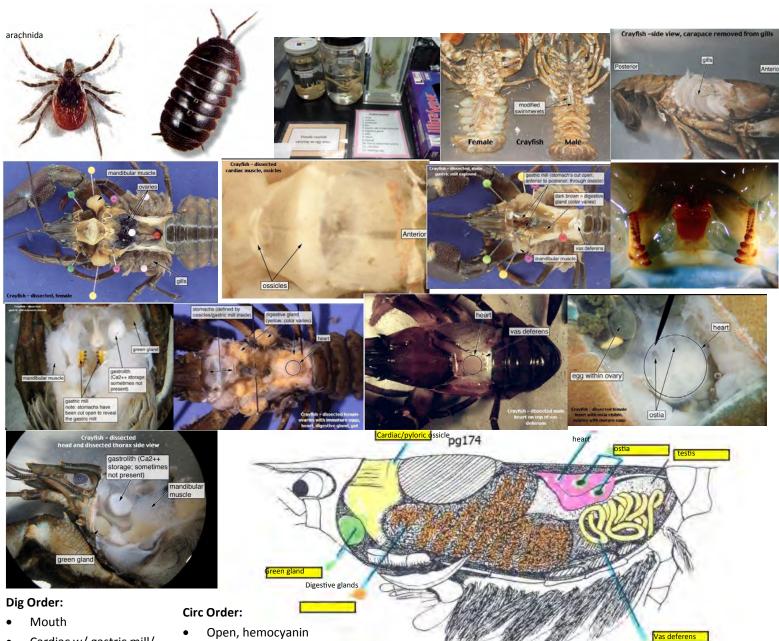
Phylum: Arthropoda Class: Crustacea

Crah

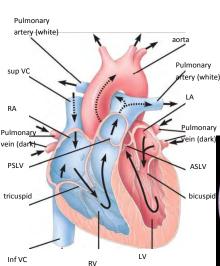
Bar

Phylum: Arthropoda

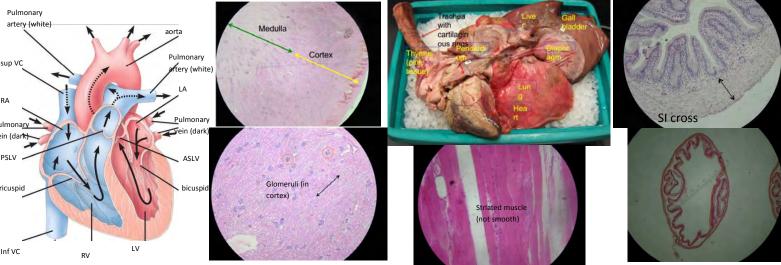
Class: Crustacea



Phylum: Arthropoda Class: Crustacea



- Cardiac w/ gastric mill/ pyloric stomach
- Midgut (dig glands)
- Intestine
- anus .


Organs:

- Heart
- Arteries
- Tissues (-O2)
- Central sinus
- Gills (+O2)
- Pericardial sinus .

Exc: N waste filtered in green gland and exctred

Repro: sperm exit at base of 4th walking legs, swimmerettes help move them. Sperm stored swimmerettes or in seminal recepticals. Eggs released from genital pore at the base of 2nd walking legs. Zygotes stored on swimmerettes hatch later

Epithelial	-	line body ca vering), mak			binds to underlying		Seal surfaces, perform selective transport, protect, secrete	
	(glandular)		les glatius	travel through epithelium. Tight junctions pre- vent passage of mats			transport, protect, secrete	
Connective	CT proper,	cartilage, b	one, blood	and prot-carl	cellular matrix (pro b complexes for nu es and blood vesse	trient diffusion),	Mechanical support, lubrication, de- fense, and storage	
Nervous	Brain, spin	al cord, neu	rons	Neurons and glial cells			Conduct electrical signals for communi- cation, sense stimuli, conceptual thought	
Muscular	Skeletal, ca smooth (SI	ardiac (heart)	:) and				Movement, contraction/ dialations (visceral movements)	
Squamous	Simple	Flat sheet	1	Lungs/ heart	/ heart Endocrine: Exocrine		e: Homeostatic Things:	
-	Stratified	Top layer f	lat sheet	Trachea	No ducts, dir	•	s duct	
	Simple	Square			bloodAdrenalHypothalami	• Liv • Kic	e pri	
	Stratified	Top layer s	quare				ney • Osmotic pressure hrymal • Temp	
Columnar	Simple	Tall	:	SI	Thyroid/ par	athyroid • tes	-	
	Stratified	Top layer t	all		• gonad		Waste conc	
CT Proper	Fluid matrix		Tendon, li ing materi		e to bone), pack-	Dense irregular (o adipose (fat), loos	dermis), dense regular (tendons/lig) se	
Cartilage	Gel matrix		Tubular or	rgans and artic	ular surfaces	chondrocytes sec	rete matirx	
Bone	Hard calcifie	d matrix		n. Matrix + lacı laversian syste			als, also collagen and prot-carb ocyte -> osteoblast maintain, osteo- n)	
Blood	Fluid matrix	(plasma)	Circ			Plasma, erythrocy thrombocyte (pla	ytes (RBC), leucocytes (WBC), telet)	

Homeostatic Temp Control:

- 1. **Control Center:** Thermalregulation at hypothalamus
- Receptor: thermal receptor
 Effector: heat regeneration through vasoconstriction and shivering/ brown fat, or heat loss through vasodilation

Essential amino acids:

- Tryptophan (corn)
- Methionine
- Valine
- Theonine
- Phynlalanine
- Lecine
- Isoleucine (beans)
- Lysine
- 8000000 to 500 oogonia between gestation and ovulation

Radiation	Q loss or gain
Conduction	Q loss or gain, Proportional to thickness of surface
Evaporation	Q loss only
Convection	ΔQ from conduction and evaporation enhanced

Ectotherm	Conform to Q	BMR (basal metabolic rate)
endotherm	Generate Q internally	Higher SMR (standard metabolic rate)

MR increase	Body mass down	Heart rate up	Breathing rate up	Blood volume up
MR decrease	BM up	HR down	BR down	BV down

More Numbers and Formulas:

- Met rate = energy used/T
- 1L O2 = 4.83 kcal liberated
- Cardiac Output = Stroke Volume X Heart rate
- BP = systolic/diastolic
- MAP = 93mmHg

•

•

•

•

•

•

- Flow = CO = $\Delta P/Resistance$
 - CO = MAP/Tot Peripheral Resistance
- RBC: 45% volume, 5trill/L

- Tidal volume (normal)
 500ml
- Vital capacity: 4500ml
- Ovulation

.

CO2

+ vs—feedback:

- Ant pit
- Low est levels

Child birth

- High est levels
- Progesterone on LH/ FSH. Cont. if implant through hCG

HR down	BR down
Tidal vol	ume (normal)

	Fun Fac	ts	Carbs	Proteins			Lipids (2x the E)	Nucleic acids
Mouth, Pharynx, and Esopha- gus	when m mucus a protects from da	rms bolus ixed with and saliva; 5 mouth mage and wallowing	Carb/ chemical digestion starts in the mouth. Salivary glands secrete salivary α– amylase						
Stomach	acid to f chyme. made of smooth inner ob dle circu	ixes with form Stomach f 3 layers of muscle: olique, mid- ular, and ngitudinal	Chemical diges- tion stops when enzymes are denatured by the low pH	Protein digestion starts here. Gastric glands: parietal cell secretes HCl, which denatures proteins and activates pepsin (cleaves peptide bonds, and makes more pepsin from pep- sinogen); chief cells make pep- sinogen; mucous cells protect against HCl.					
SI			Pancreas se- cretes pancre- atic amylase	Pancreas secretes trypsinogen (activated to trypsin by en- teropeptidase, tryp activates everything else), chymotropsin (ogen), (pro)carboxpeptidase		Liver + gall blad bile salts, which and keep it from Pancreas secret lipase. Fats are into lipase, and glycerol and fat	emulsify fat n coalescing. es pancreatic broken down then mono-	Pancreas secretes pancre- atic nuclease. DNA and RNA are broken down into nucleotides	
SI brush border	Microvi looks lik	lli of SI, e hairbrush	Disaccharides - > monsaccha- rides	Makes enteropeptidase. Di- peptides -> amino acids)i-			Nucleotidase (nucleotides to nucleosides); nucleo- sidase + Pi (into Pi, sugars, N bases)
What		Monosacc	haride	Amino A	cids	MG,	fatty acids, glyce	erol	N base, sugar, Pi
How (lumen side) Gluc/ galactose: cotran- sport w/ Na+. Fructose: facilitated diffusion		Cotransport w/ Na+ Simp SER,		SER,	Simple diffusiom. Turned to TG in SER, coated with protein (chylomicron) in Golgi.		N bases and Pi: active transport. Sugars (5C): simple diffusion.		
Basal (blo	od) side	Facilitated	diffusion	Facilitate	d diffusion	exoc	ytosis		Facilitated diffusion
Blood or lymph? Blood: Capillary in villus - portal vein -> liver		-	Blood: Capillary in villus - Lymp			Lymph: lacteal capillary: lacteal vessel/duct: veins that go to heart		Blood: Capillary in villus - > portal vein -> liver	
Cephalic	Cephalic (prep) Think of food				Nerves or hormonomic NS -> enternation			Stomach: inc motility	reases secretion and

Intestinal (slow)	Food enters SI (decrease pH)	S-cells -> secretin	Pancreas -> bicarbonate. Stomach: decreases secretion and motility
Intestinal (slow)	Food enters SI (fatty acids and MG)	CCK-PZ cells -> CCK-PZ (cholecystokinin-pancreoenzyme)	Pancreas: exocrine gland cells -> dig enzymes. Gall bladder -> bile
Gastric (start)	Food enters stomach (distension, in- crease pH and peptides)	G-cells -> gastrin	Stomach: increases secretion and motility
Cephalic (prep)	Think of food	Nerves or hormone: brain -> auto- nomic NS -> enteric NS -> stomach	Stomach: increases secretion and motility

Gluc increase	β cells in pancreas make insulin	, , , , , , ,	Muscles and liver: excess gluc converted to fat in liver, and stored in adipose cells.
Gluc decrease	α cells in panc make	Liver breaks down glycogen and releases	Glucagon start glucogenesis, which makes glucose
	glucagon	it into blood. Adipose breaks down TG to	from aa, glycerol, other stuff. As concentration of
		FA and glycerol an d releases into blood.	FA increases, more FA and less gluc get used.

Stimulus	Source	Hormone	Target	Increase hormone	Decrease hormone
High calorie food	L-cells in SI (ileum) and colon	РҮҮ	Decrease appetite/feel full	Inc appetite dec food intake	dec appetite inc food intake
Increase fat in adipose	Adipose release leptin	Leptin	Decrease appetite	Decrease appetite	Uncontrolled eating
dec food in stomach	stomach	Gherlin	Inc hunger (number of times, not amount)	le after diet: want to eat more	Appetite decrease

2 cham- bers	1A 1V, fish	+O2 in gill capillaries, -O2 in systematic capillaries	Limits O2 delivery and metabolic rate
3	2A 1V, amphibians and reptiles	Pumocutaneos circuit: (LA) +O2 in lungs and skin. Sys- tematic ciruit: (RA) -O2 in organs. Septum separates ventricle, diverts blood away from lungs underwater.	Vigorous blood flow to brain. Increases O2 and metabolic rate
4	2A 2V, Birds, mammals, crocodiles	Separates oxy poor and rich blood	Enhances O2 delivery and helps restore pressure after lungs

Stroke Volume/HR Reg:				
•	Brain or hormone			

(HR)

tion (SV)

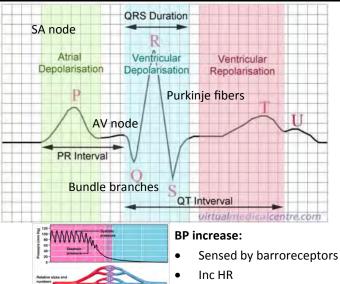
•

Control SA/ AV node

Strength of contrac-

LV systole:		LV diastole:
٠	V contracts	

•	V relaxes
•	Vp < Aorticp
•	ASLV closed
	(dub)
•	Vp < Ap
	• • •


Blood goes into aorta AVV opens

Heart	SS Ep & CT	Myocardium: Striations w/ intercalated discs, separated by gap junct.	SS ep & CT
BV	SS ep & CT	& CT Smooth muscle (smooth muscle) & C elastic sheets (esp. large arteries). Med arteries regulate distribution. Arteri- oles have lage SA and reg BP	
Veins			u

•

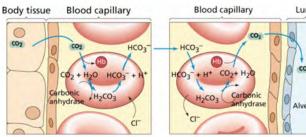
•

•

- In SV • Inc TPR •

•

•


- Inc MAP
- Means constricted arterioles

Conc gradient	O2. CO2, Na+, K+, etc	Flow through leaks/holes in capillaries at anastomosing net-works.	Low V helps
Hydro p grad.	water		Due to actual pressure (BP). Raise MAP, raise filt, lower MAP
Osmo p grad	Water	Stays constant, favors reab- sorbtion	Due to conc. Gradient. Lower Osmop, raises filt, lower MAP

Water			Easy to keep surfaces moist	Gills/skin		
Terrestrial		Higher concentration of O2	Resp surface must be inside	Lungs/ trachea/ skin		CO2 and O2 diffuse fast- er, less E
Resp Surface	Either GVC	Cor skin capillaries	Cnidarians, annelids, frog	s	Must be dmp and have high SA	
Gills	Total SA large		Starfish, mollusk, crayfish, parapodia		Bony fish: continuous flow of water ventilates gills.	
Trach	ach Air sacs near important organs		insects		Large insects ventilate w/ body move- ments	
Lungs	Lungs Conducting and resp passages. Sur- factant prevents collapse of alveolus		Vertebrates, snails, spiders		Circ system req. Frog: positive pres- sure, push air into lungs, Birds: linear lungs, that utilize all of air	

Conducting vs Resp passages

- Trap and eliminate debris, have • mucus and cilia
- Nose
- Pharynx
- Larynx •
- Trachea •
- Bronchi
- **Bronchioles**
- Where gas ex occurs + capilaries .
- Resp bronchiole
- Alveoli

+ HC03	c PCO
HCO ₃ ⁻ + H ⁺ CO ₂ + H ₂ O H ₂ CO ₃ Carbonic Alveolus	ec at

Hemocyanin

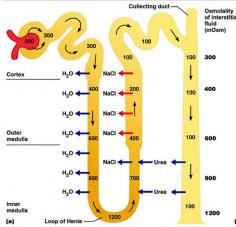
Inc PCO2	Drastic ventila- tion inc	Peripheral (& cen- tral in medulla) chemoreceptors in large arteries	Maintain O2 CO2 balance	
Dec aterial pH	Dec aterial pH Vent inc Peripho orepto		Regulates plas- ma pH	
Dec aterial PO2	Vent inc	Peripheral CR	rare(<60mmHg)	

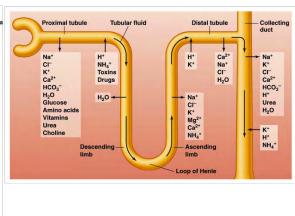
Dissolves in plasma

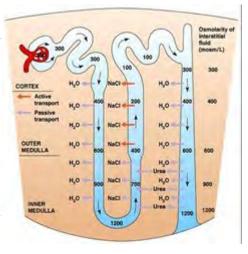
Venus

40

46


In Venus blood, %60 and arterial blood 90% of CO2 transported as bicarbonate (HCO3-). Carbonic anhydrase in HB breaks down CO2 very quickly


ReninReleased from juxtaglomerular apparatus (macula densa cells) during drop in BP or Na		Promotes angio II and aldost.
Angiogensin II	Inc Na+ and water reabs.	Stimulates aldosterone from adrenal gland
Aldosterone	Inc Na+ and water reabs.	
ANF	Atrial nutritive factor: inhibits renin, aldost, and NaCl	
ADH	Antidiuretic hormone: increases water permeability in DCT/CD, decreases osmolarity	increased ECF osmo releases ADH from pituitary (hypothalamus controls)


Arth. molluscs

Po Po (100 m (Pog = 40 mm/g	Pos = 100 mmHg		-	pH = hi	gh T of
Pulmonary arteries	ng capillaries	40			Arteriol
Systemic Veins Pcos = 46 mmHg (sue capillartes	20- 20-	\equiv	pO2	100
Pos = 40 minility	Pos = 100 mailing	0 8 8 8	100	PCO2	40
Po	$p_2 < 40 \text{ mmHg} (mitochondrial P_{D_2} < 5 \text{ mmHg})p_2 > 46 \text{ mmHg}$	PO _g (mmHg)	o		
Hemoglobin	Annelids/ vertebrates	Iron (red)	Packaged	in cells (98%)

Copper (blue)

Freshwater fish	Water lass co gains water a	nc. Than body, fish nd loses salt			Large amount of unconcentrated urine	
Boney fish		concentrated than es water and gains salt			Small amount of slightly diluted urine	
Terrestrial	Loses water		Water and salt in (drink), water and salt out		ter and	Moderate volume of concentrated urine
Na			К		Mor	e Sodium Channels Open Sodium Channels

	114		N.	Sodium Channels
	Fast	Slow		Sodium Channels Open Potassium Channels Potassium Channels
Rest	closed	open	Closed	+30 mV-
Thresh	open	Start closed, still open	Start open, still close	0 m¥ -
Depol	open	open	u	-70 mV
Peak	open	inactive	Open	Time (ms) 1 ms
Refract		Can open	Start close, still open	

s	arcomere	Makes up myofibrils, make up	Ca enters, and bind to troponin,	Plasma membrane called a	SER called sarcoplasmic
		muscle cells called fibers, and	troponin and tropomyesin move	sarcolemma. Has T tubules	reticulum. Has Ca pumps
		are made of myofilaments,	and exposes actin-myosin bind-	(folds) with Na/K pumps and	to maintain gradient
		made of Z line, 1/2 I band	ing site. Myosin pushes think	channels. AP travels down T	(pumps Ca into SER) and
		(thin) A band (thick) 1/2 I	and thin bands together during	tube to SER, where Ca is re-	Ca channels opened by AP.
		band, Z line.	contraction (requires ATP)	leased	

Ig: all determine binding properties Autoimmune Diseases: of Fc • Lupus: histones IgG: gamma

•

•

Rheumatoid Arthritis: cartilage •

Diabetes I: pancreas

Rheumatic fever: heart

- IgA: amylase
- IgM: milk
- IgE: allergies w/ mast cell .
- IgD: receptor on B cell .

Immune Timeline:

- Macrophage w/ MHC2
- T4 binds
- B cell makes MHC2
- B cell makes plasma cells
- T helper binds makes interleukins (starts activation • and clonal expansion)
- Plasma cells make Ab in blood and lymph
- T8 cell on MHC1 uses interleukin for activation
- Cytoxic T lyses cell (porferin/ granzymes)
- Ab destroy antigen

Neutrophil	60-70%	Phagocytic, secrete anti bacterials	Release chemicals to kill bact.	
	WBC	(innate) stimulate repair	Fast response, short lived	
Eosinophil	2-4% WBC	Allergies		
Basophil	0-1%	Initiate inflammation (like mast)		
Monocytes/ Macrophage	3-8%	Become macrophage (innate), stimulate repair	Antigen presenting cell, starts specific immunity, slow response long lived.	Present part of pathogen w/ MHC 2
Lymphocyte (B)	20-30%	Specific immunity, become plasma cells	Display MHC2. Plasma cells make Ab which inactivate pathogen	Develop in bone marrow. Activates mostly by prot
Lymph T4	20-30%	Specific immunity. Make helper T	Need major histocompatibility complex (MHC)	Develop in thymus. Activates mostly by prot
Lymph T8	"	Specific immunity. Make cytoxic T	Need MHC 1 (cytotoxic). Kill viral infected and cancer cells w/ per-forin and granzymes	Develop in thymus. Activates mostly by prot
Lymph T help	u	Specific immunity. Active T cells, B cells, NKC, & MO w/ interleukins	Need MHC 2. only come from Ag presenting cells.	Come from T 4. Activates mostly by prot
Mast Cell		Release histamine: initiates in- flammation	Releases histamine, which causes vasodilation	Activated by injury, Ag-Ab complex, or complement

General Infected body actions	Cell: Release interferons to make adjacent cells resistant, and to activate macrophages/ natural killer cells.			Increase clotting factors so bact don't move
Specific Infected call ac- tions (humoral: inactiva- tion w/ Ab, cell mediated: lyse/ phagocytosis	Epitopes bind to antigens, bind to immunoglobulins (made of light and heavy region, Fc, same in all cells). Fab region deter- mines antigen	Clonal expansion: excess T and B cells serve as memory cells (as opposed to effector cells) which are not activated. Increase rate and duration of 2nd immune response	Ab activate com- plement on bact, lyses bact, enhances in- flamm, etc	Cytoxic and Helper T cells activate more lymphocytes, and secrete cytokines (interleukins: activate T and B cells; Perforin/ Granzymes: from cytoxin T, and lyse cell)

Neutralization	Ag-Ab complex surrounds and neutralizes virusAg-Ab complex binds a lot of Ag determinants together, so they ppt outAg-Ab surrounds and protects bacteria	
Precipitation/ Aggultination		
Opsonization		
Complementation	Ag-Ab complex assembles complement	par

Hormones:

- Oxytocin: for labor
- ADH: kidney
- Thyroid Stimulating (TSH):
- Adrinocorticotropic (ACTH): controls cortocoids
- Growth (GH): counters insulin, non-tropic effect on metabolism
- Lutenizing (LH): stimulates interstitial cells in men, and corpus luteum in women
- Follicle stimulating (FSH): spermatogenesis in males
- Prolactin: Lactation

- Epin/norepinephrin: increase HR, BP, BS, vasoconstriction, less digestion/ release fat
- Cortisol: glucocorticoid, reg by ACTH, antiinsulin effects/ release fat
- Aldosterone: mineralocorticoid, effects NaK pumps to reg BP
- Calcitonin: decreases plasma Ca by dec bone reabsorbtion
- ParaTH: opposite of calcitonin
- Thyroid Hormone: T3 (triodothyonine) & T4 (thyroxine) . Inc met rate and mental acuity/ growth

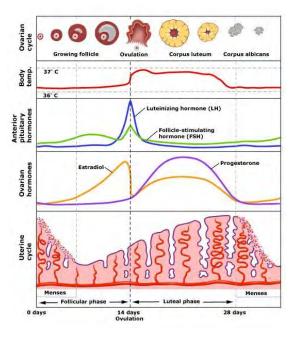
Lymph Organs:

- Thymus: produce T
- Spleen: expose blood born antigens to T/B, phagocyte particulate matter and damaged blood cells
- Tonsils: expose B/T to antigens in injested material
- Lymphnodes: expose lymph born antigens to B & T cells
- Bone Marrow: produce B
- Nonhuman: hemocytes/ ameobocytes

•

Amino Acid (Tyrosine) & Peptide/ Protein water soluble	Secreted through exocytosis,	dissolve in plasma, dis- solved part—free frac- tion, active	Break peptide bonds in blood or target cells	Short half life (s-m)	Receptors on cell mem- brane (ion channel/ signal transduction
Steroids (Cholesterol)/ Thyroid hormones fat soluble	Secreted through membrane,	bind to proteins (globulins), active when not bound	Hydroxylated and conjugated in liver	Long half life (hours)	Receptors inside the cell (transcription fac-tor)

Hypothalamus	In brain	Controls post. Pituitary directly, ant pituitary through hormones, ie dopa- mine	Negative feedback from ant pit.
Pituitary	Anterior (adenohypophysis) of epithe- lial, and posterior (neurohypophyis)	Post. Produces oxytocin and ADH. Ant: TSH, ACTH, GH, LH, FSH, PRL	Negative feedback regulation for ant. GH: too much, tall. Too little, short
Thyroid	follicular cells surround a colloid. C cells (parafollicular) in between	Colloid makes thyroid hormone, Thy- roglogin made by foll. Cells, along with iodinated tyrosines. TH released dur- ing phagocytosis of colloid. C calls make calcitonin	Not enough TH: enlarged thyroid (goiter). Too much, exophthalmos
Parathyroid	4 on dorsal part of thyroid	Parathyroid hormone & calcitonin	Rickets: vitamin D def
Adrenal	On top of kidneys, consist of cortex (zona glomerulosa, fasciculata reticu- laris) and medulla	Medulla: epinephrine and norepi- nephrine. Cortex makes aldosterone and cortisol	Too much glucocort: Cushings (fat, hyper). Too little (cortisol or aldoste- rone): Addisons (weight loss, hypo)
Pancreas	Alpha and beta cells	beta cells make insulin, alpha cells make glucagon	
Gonad	Growing follicles secrete estrogen		


Hormones Cont:

- Insulin: decreases plasma glucose by increasing its utilization
- Glucagon: increases plasma gluc by increasing its synthesis

Random Repro Notes:

- Bulbourethral glands: clear urethra and nutrilize urine
- Top of sperm called acrosome
- Cumulus oophorus: layer around oocyte that triggers enzyme release
- Secondary oocyte released for Graaian follicle, turns into corpus luteum
- Atresia: process of killing remaining follicles
- Fimbria: fingers on fallopian tube

Ovulation occurs just after peak in LH, FSH, and estrogen. Progesterone peak occurs during corpus luteum degredation

