Chemistry 3A Reaction Summaries Outline - Major Products

ותנתנתנתנתנתנת

IS THE REACTANT AN...

1. ALCOHOL

- a. Metal Hydride
 - i. Metal Alkoxide and Hydrogen gas forms
- PBr₃ b.
- i. $S_N 2$: Br splits off and PBr_2^+ attaches to the –OH; Br undergoes $S_N 2$ with HOPB r_2^+
- SOCI₂ c.
 - i. S_N2: Cl splits off and SOCI⁺ attaches to the –OH; Cl replaces the –OH
- Strong Nucleophillic Acid (HBr, HI, HCl) d.
 - i. Primary; S_N2: The anionic nucleophile replaces the –OH
 - ii. Secondary; S_N1: The anionic nucleophile replaces the –OH
- Strong Non-Nucleophillic Acid (H₂SO₄, H₃PO₄) e.
 - i. Primary; High Temperature
 - 1. S_N2: Identical Alcohol replaces the –OH group
 - Primary; Very High Temperature ii.
 - 1. E2: Alcohol dehydrated and double bond forms
 - iii. Secondary/Tertiary; E1: The H+ protonates the -OH group
 - Is there a more stable carbocation location? 1.
 - Shift (alkyl or hydride) before double bond a.
 - Else... 2.
 - Double bond forms with adjacent carbon(s) a.
- Tertiary Alcohol ((CH₃)₃COH) f.
 - i. The tertiary alcohol loses its -OH group and replaces the hydroxyl -H on the other alcohol, forming an ether

ETHER

- Oxacyclopropane? a.
 - Anionic Reagent/Strong Base (LiAlH₄, NaOH, RO⁻) i.
 - S_{N2} : Nucleophillic "Back-Attack" at a less substituted carbon, opens the ring at the C-O bond of the attacked carbon forming an alcohol

ii. Nucleophillic Strong Acid (HBr, H₂O)

- 1. $S_N 2$: H⁺ attaches to the -O-, creating more positive charges at the carbons; Nucleophillic "Back-Attack" at the more substituted carbon, opening the ring at the C-O bond of the attacked carbon, forming an alcohol; if the nucleophile is -OH, a
- vicinal diol is formed

iii. Grignard Reagents (RMgX)

- 1. S_N 2: The R of the Grignard reagent combines with an opened oxacyclopropane (e.g. from H[†] in THF)
- Else... b. 0,

i.

- Ether reacts with O₂ to form 2 Hydroperoxide ethers which then react to form an 1. ether peroxide
- ii. Strong Nucleophillic Acid (HBr, HI, HCI)
 - $S_N 2$: -O- is protonated and -X replaces the -OR substituent

iii. H,0

1. $S_N 2$ or $S_N 1$: The ether is hydrolyzed, producing an alcohol and another organic

ALKANE

3.

- a. Reactive Haloalkane (Br, Cl, I)
 - i. Primary?
 - 1. H₂O

a. S_N2: -OH replaces –X, forms alcohol

2. Alkoxide (RO⁻)

product

- a. $S_N 2$: Williamson Ether Synthesis: –OR replaces –X, forms ether
- 3. Organometallic (Grignard, RMgX, LiAlH₄)
 - a. Aldehyde and chain attached to it replaces –X, forms alcohol
- ii. Else...
- Strong Base (-OH, -OR, -NR)
 - a. E2 or E1: Forms a double bond between the carbon that had the Halogen and an adjacent carbon if E2; forms a double bond between a carbon with a stable carbocation configuration and an adjacent carbon if E1
- b. Else...
 - i. Haloalcohol

1.

- 1. Strong Base (-OH)
 - a. S_N2: Intramolecular Williamson Ether Synthesis: base accepts proton from alcohol, –O⁻ replaces –X in S_N2.

I. ALKENE

• H_2O and Strong Non-Nucleophillic Acid (H_2SO_4)

- i. Cold, Markovnikov: Less-substituted side is protonated, -OH group attaches to the more
- substituted side; Reversible

b. Halogen (Cl₂, Br₂, I₂)

- i. Cold, no H₂O
 - Anti-Addition: Both ends of the double bond are halogenated, with X⁺ forming a 3member ring with the two double-bond carbons and the X back-attacking the more substituted carbon
 - ii. H₂O solvent
 - 1. Anti-Addition: Forms a haloalcohol with the same mechanism as 3.b.i.1 (above)

Strong Hydrohalide (HBr, HCl, HI)

- i. ROOR Reagent, Heat
 - 1. Radical Halogenation, Anti-Markovnikov: Adds a hydrogen to the more substituted side and the X radical to the less substituted side
- ii. Concentrated acid
 - 1. Markovnikov: Addition with the halogen attaching to the more substituted carbon
- d. Oxymercuration $(Hg(OAc)_2 + NaBH_4 + H_2O/ROH)$
 - i. Markovnikov: Forms a C–C–HgR ring until –OH Back-attacks the more substituted carbon. $S_{\rm N2}$ reaction between an H from NaBH $_4$ and HgR

e. Hydroboration (BH₃ + THF + H₂O₂ + NaOH)

i. Anti-Markovnikov: 3 alkenes that accept a proton from and bond with BH₃. Reaction with peroxide forms 3 alcohols and NaBO₃

Carbene (CN₂H₂, ICH₂ZnI)

f.

- i. Forms a cyclopropane where the double bond used to be
- g. Halogenated Carbene (CCl₃H)

h. Peroxycarboxylic acid (R(CO)OOH)

i. Forms an oxacyclopropane at the double bond site along with a carboxylic acid; can be hydrolyzed

ՆրԱրԱրԱրԱրԱրԱրԱրԱրԱր

- i. $KMnO_4/OsO_4 + H_2S$
 - i. Forms a syn diol at the double bond site
- j. Ozonolysis ($O_3 + Zn / CH_3COOH$)
 - i. Undergoes a two-step mechanism to split an alkene in the middle of a double bond, placing O at the ends (forming ketones).

k. Strong Non-Nucleophillic Acid (NO H₂O)

- i. Markovnikov: Undergoes a polymerization that breaks at the formation of a double bond in the polymer
- I. ROOR + Heat
 - i. Undergoes a polymerization that breaks at the formation of a double bond in the polymer
 - that breaks after a number of possible termination step possibilities (•OR, •R)

5. ALKYNE

- a. Pt / Pd + H₂
 - i. Full reduction to alkane

b. Lindlar Catalyst (H₂ + Pd + Pt + "poisoned chemicals")

i. -cis reduction to alkene

NaNH₃

c.

i. -trans reduction to alkene

d. Strong Nucleophillic Acid (HBr, HI)

- i. Anti-Addition; Markovnikov: forms a geminal Haloalkane two halogens attached to one
 - carbon; anti and syn
- e. Halogenation (Br₂ + CH₃COOH + LiBr / Br₂ CCl4)
 - i. Anti-Addition: forms an anti halogen addition, forming a dihaloalkene; if reacted again with another halogen, the alkene becomes a tetrahaloalkane

f. Mercuric Hydration (H₂O + HgSO₄)

Markovnikov: reduces the double bond by protonating the less-substituted side and forming a ketone on the more substituted carbon through tautomerization

. HBr + ROOR

i. Anti-Markovnikov: similar mechanism to 3.c.i.1.

. Hydroboration ($R_2BH + H_2O_2 + THF$)

i. Anti-Markovnikov: R₂BH bonds with alkyne before reacting with a peroxide to obtain an alkenol; only way to obtain aldehydes (through tautomerization)

6. SULFUR-CONTAINING

b.

a. Thioester (RSR)

i. Strong Base (-OH)

1. An alcohol and sulfur-containing organic compound forms

Thiol i. I₂

1. Oxidation of thiol yielding disulfides – a peroxide analog (R–SS–R)