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1 Problem 1

1.1 Determining Strain Energy

After finding the lengths of each rod using trigonometry, we use the method of
joints to solve for each of the reaction forces. We then use these forces, along
with the corresponding lengths and areas, to calculate the sum of the system’s
internal energy.

1. Use the method of joints, first using the ΣF for x and y at the joint where
the load is being applied, to solve for reaction forces FCD and FBC (the
two ’standing edges’ of the triangle) in terms of the load, P.

2. Solve at joint D to find the force of the ’bottom edge’, FBD of the triangle
in terms of the load, P.

3. Plug these loads (FCD, FBC , and FBD, along with the corresponding areas

and lengths of each of the members, into the formula Ui = F 2L
2EA .

4. Sum up these values and that’s your answer!

1.2 Find the vertical displacement at point C

We know that the total internal energy we found has to be equal to the external
energy, which equals 1

2FδE) Therefore, because we found the external energy
in terms of P (after we solved for all the member forces in terms of P), and the
external load being applied at point C is P (i.e. F = P and δC = δE, we can

write 1
2PδE = 0.233P 2L

EA and solve for δE . This is our deflection.

1.3 Find the horizontal displacement at point D

Here, we plug into the axial loading deformation equation δ = FL
AE , where F is

FBD, which we solved for in terms of P earlier in the equation, L is the length
of rod BD, A is the area, and E is the Elastic Modulus.

1.4 What is Pcr?

To find the critical load, realize that it is going to be either the load on BC
or CD that will buckle, so substitute those lengths, along with the given value,
into the equation that the homie Shaofan gives us.
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2 Problem 3

2.1 Draw Mohr’s circle of the stress state at that point

Get out the paintbrush – it’s time to become an artist and draw a cool circle.
And people thought engineers were square. Anyways, draw a circle. If you can’t
do that, refer to that one Spongebob episode where Squidward thinks he knows
art.

The below figure is going to be helpful, Note that most of the below formulas
are given, so it’s really a matter of knowing which of the 4 values in the stress
matrix correspond to which variables and knowing how to draw the circle once
these values have been calculated. If you were to get a tattoo between now and
Wednesday, I’d recommend getting this:

Steps to Draw:

1. First, offset the center of your circle by σave, which is
σx+σy

2 . In this case,
it was zero, so the circle’s center remained at the origin.

2. Find the tan(2θp) value with
τxy

1
2 (σx−σy)

.

Remember to take the tan−1 to find the actual angle!

3. Use this angle and draw a line R, whose length is
√

(
σx−σy

2 )2 + (τxy)2

with respect to this angle to the horizontal.

4. Label points X and Y with (σx,−τxy) and (σy, τxy), respectively.

2.2 Find principal stresses σ1 and σ2 and show the results
on properly oriented element in physical space

The principal stresses can be found by the equation:

σmax,min =
σx+σy

2 ±
√

(
σx−σy

2 )2 + (τxy)2, or, in English, the average stress

plus R for the maximum stress, and the average stress minus R for the minumum.
In this case, the average stress was zero, so we just got plus R for the maximum
and minus R for the minimum

To draw the square (maybe engineers are square):

1. First draw a horizontal line.

2. Then, draw the top of your square rotated θp) degrees with respect to that
line (note: this is not the absolute value, so if your angle is negative, it
has to be below the horizontal!).
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3. Now, draw the minimum principal stress applied to the left and right sides
of the square. If it is a negative value, it must be pointing inward!

4. Draw the maximum principal stress on the top and bottom.

2.3 Find the maximum shear stress, and show the results
on a properly oriented element in physical space

This is similar to before, except now you have to find a new angle, θs.

1. Find 2θs with 90 - | 2θp | (note that it is the absolute value of 2θp).

2. Because our 2θp was negative, make 2θs negative.

3. Divide 2θs by 2 to get θs.

4. Draw a vertical line.

5. Draw a square rotated θs from the vertical. This will be to the left if it is
negative, similarly to how it was below the line if it was negative for the
previous part.

6. The maximum shearing stress, τmax is simply your R from before.

7. Your σ′ is equal to σave =
σx+σy

2

8. On the each side of the square, draw an arrow parallel to the side, labeled
with shearing stress, and one perpendicular to the side, indicating σ′.

3 Problem 4

Solving this type of problem all boils down to one equation: EIy′′ = M(x).
In this case, y is equal to the deflection, its first derivative y’ is equal to the
rotation at the given cross-section, and y” is equal to the curvature at the given
cross-section (1/ρ). Therefore, to find the deflection y itself, we have to integrate
twice, using boundary conditions to solve for the constants.

Before we can do any of this, however, we have to determine what M(x) is
in the first place. Here are the steps:

1. As stated in the hint, make a cut at a point ’x’.

2. Take the moment about the cut and solve for M(x):

ΣMcut = -M(x) -Py(x) = 0 → M(x) = -Py(x)

Note: in the above equation, y is the distance that the beam has been
displaced from its original axis. Obviously, as we move down the beam,
this amount will vary, which is why it is a function of x.

3. Since EIy′′ = M(x), we know that EIy′′ = −Px. Move both sides to the
left of the equals sign to get y” + Py

EI = 0

4. Notice how y is the only thing that varies in the second term of the above

equation. Therefore, let us set a constant, δ equal to
√

P
EI so that δ2 is

equal to P
EI
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5. Plug this into the solution: y = Asin(δx) + Bcos(δx).

6. Apply the boundary conditions.

(a) Since y(0) = 0, and cos is 1 at 0, B must be 0.

(b) Since y’(L) = 0, δAcos(δL) = 0. This means that either A = 0, which
means that we have a trivial solution, or it means that cos(γL) = 0.

(c) We know that cosine is equal to zero on multiples of pi
2 , so we set δL

= nπ
2 .

7. We then divide both sides by L and square δ to get δ2 = (nπ2L )2.

8. We substitute back in for δ the value of P
EI and solve for P, plugging the

lowest possible value of n – 1 – to get Pcr in terms of E, I, and L.

Recall that Le = 2L in this case!

9. Calculate Iz and Iy, using the parallel axis theorem on the former.

10. Plug both Iz and Iy into the formula for Pcr. The one that is lower is
your answer!

4 Problem 6

4.1 a. Draw shear diagram

Come on now, you got this.

4.2 b. Find maximum nail spacing ∆s

Once you’ve solved for q in the first hint given (this requires calculation of Q
and I), set it equal to NAllowable and solve for ∆s.

1. Find the Q of the tiny 4 by 2 mm bar in the cross-section shown. A is
simply 8 mm (4 times 2), and y is simply the distance of that tiny bar’s
centroidal axis from the centroidal axis of the entire beam, which is 3mm.

2. Find Iz by subtracting the moment of inertia of the small (nonexistent)
square from that of the larger square in the cross-section.

3. Now, with the V being the 1000 N/m distributed load, we can calculate
q with V Q

IZ
.

4. Manipulate the third equation, turning it into q∆s = Nallowable.

5. Nallowable is actually 2Fnail, so plug in the given value for Fnail of 200 N
and solve for s, the spacing!
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5 Problem 7

6 a. Find the shear stress distribution along the
section of the shaft

Obtain the shear stress as a function of r with the equation τ(r) = Gφ
L r for each

material.

7 b. Find the angle of twist of the shaft

1. Realize that since the torque on each material i is GiJi
Li

φi, the total torque
must be the torque applied T and is the sum of the two torques: T =
(GaluminumJaluminum

L + GsteelJsteel
L )φ.

2. Since we know all of these values except for φ, we rearrange this equation
to φ = TL

GaluminumJaluminum+GSteelJSteel
.

3. Find J for both aluminum and steel with the equation J = πr4

2 , making
sure to use rinner for the inner circle and subtracting the J calculated with
rinner from the J calculated with router for the outer material.
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