
Search
Tree Search

procedure Tree Search(problem, strategy)
fringe ← start state of problem
while fringe is not empty do

node ← Remove Front(fringe, strategy)
if node has goal state then

return solution
else

Insert children of node into fringe

return failure

Graph Search
procedure Graph Search(problem, strategy)

closed ← empty set
fringe ← start state of problem
while fringe is not empty do

node ← Remove Front(fringe, strategy)
if node has goal state then

return solution
if state(node) not in closed then

Add state(node) to closed
Insert children of node into fringe

return failure

A∗ Heuristics
Admissible: For every state s, h(s) ≤ actual cost from s.
Consistent: For every arc (s1, s2), h(s1) − h(s2) ≤ cost from s1 to s2.

CSPs
Search problem with n variables Xi that must be assigned to values from domains Di,
subject to constraints Xi → Xj . A state is a full assignment of values: has dn states.

Goal is to find an assignment to every variable that satisfies all constriants.

Backtracking Search
procedure Recursive Backtracking(assignment, csp)

if assignment is complete then
return assignment

var ← Select Unassigned Var(csp, assignment)
for value in Order Values(var, assignment, csp) do

if value is consistent with assigment then
add {var = value} to assignment
result ← Recursive Backtracking(assignment, csp)
if result is not failure then return result
else remove {var = value} from assignment

return failure

MRV and LCV
MRV: Select Unassigned Var should choose the variable with fewest values remaining.
LCV: Order Values should choose the value that leaves the most values free in the future.

Forward Checking
procedure Forward Checking(csp, assignment)

for every unassigned var in csp do
remove values in var’s domain that conflict with assignment

Arc Consistency
procedure Arc Consistency(csp)

arcs ← queue of all binary constraints
while arcs is not empty do

Constraint (X → Y ) ← pop(arcs)
for every value x in domain of X do

if there is no y in domain of Y consistent with x then
remove x from domain of X

if values were removed from X then
Insert all constraints Z → X into arcs

Tree-Structured CSPs
A tree-structured CSP can be solved in O(nd2) time with no backtracking.

procedure Solve Tree CSP(csp)
Linearize the constraint graph
for i from 2 to n do

Enforce consistency of Parent(Xi) → Xi
for i from 1 to n do

Assign Xi consistently with Parent(Xi)

Note: For undirected constraints, any level-order traversal is a linearization.
Enforcing arc consistency on a tree-structured CSP will always result in an empty domain
if no solution exists with the current partial assignment.

Cutset Conditioning
Remove c variables from CSP such that remaining constraint graph is tree-structured.
For every possible assignment of cutset, solve residual tree-structured CSP until solution is

found. Runs in O(dc(n − c)d2) time. The naive solution would be O(dn) worst-case.

Iterative Improvement
Begin with an assignment for every variable. Randomly select some variable X that vio-
lates a constraint, and reassign it to the value x that violates the fewest constraints.

Games
Multi-agent search problems with utilities for each agent at the leaves of the search tree.

Pruning
Don’t consider nodes in game tree that are guaranteed not to change outcome. Alpha-beta
max node code below:

procedure Max Value(state, α, β)
v ← −∞
for each successor of state do

v ← max(v, Value(successor, α, β))
if v ≥ β then return v

α ← max(α, v)

In general games, pruning may be possible if there are dependencies between utilities.
Pruning with expectimax is possible if we can guarantee something about the ranges of
chance node values. For prune tree pattern questions: node two levels above x must
always have at least one fully returned child to be able to prune x.

MDPs
A problem characterized by states s ∈ S, actions a ∈ A, transition probabilities
T (s, a, s′) = P (moving to s′ | took action a from state s), and rewards R(s, a, s′) =

value of moving from s to s′ through action a. Agents may have a time-discounting fac-
tor 0 < γ < 1. Goal is to find a policy π(s) ∀s ∈ S that will maximize expected sum of
rewards from s.

Bellman Equations
EU of starting at state s and acting optimally:
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EU of starting at s, taking action a, and acting optimally:
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Value Iteration
Performs one step of expectimax. Initialize V0(s) arbitrarily for all s ∈ S. Then at each
iteration, for all s,
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Convergence is guaranteed if γ < 1 or MDP has finite horizon.

Policy Iteration
Start with an arbitrary policy π0. For policy πi, find values until convergence:
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Once V πi has converged, compute πi+1:
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Learning
Agent is operating in an MDP where S and A are known, but T and R are not known
and must be learned.

Direct Evaluation
Act according to policy π. Every time a state s is visited, write down what the eventual
sum of rewards turned out to be when you stoped acting. For each s, average empirical
sum of rewards over multiple trials.

TDL

Act according to π. Every time you start at s, move to s′, and get a reward r, perform
the update:
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0 < α < 1 is a learning rate parameter; small values privilege accumulated experience
and large values privilege new sample: should decrease over time.

Q-Learning

Randomly choose actions at every state. Every time you start at s and move to s′ with
action a and reward r, perform the update:
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This will find the optimal policy even acting randomly. To limit regret, use an explo-
ration plicy that efficiently explores unknown Q values until you have a good idea what
they are.

Feature-Based
Describe states or Q-states as a vector of real-valued features fi. Perform update not on
state, but on the weights wi we assign to feature fi:

Q(s, a) =
∑
i

wi fi(s, a)

Suppose you move from s to s′ through action a and get reward r. Perform update:
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∀i, wi ← wi + αdfi(s, a)

Weights capture whether feature is good or bad (sign) and how important it is (magni-
tude). Since fi(s, a) = 0 if feature is not present, weights only get updated for active
features.
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