
C Review Session

Hosted by: Collin Johnston and Maajid Nazrulla

http://bit.ly/MKzj0f

http://bit.ly/MKzj0f
http://bit.ly/MKzj0f


According to Wikipedia, C is a general purpose, statically typed, imperative (procedural), multiplatform 

language initially developed by Dennis Ritchie during the late 1960s and early 1970s at AT&T Bell

Labs. 

This review session will cover basics of ANSI C, a family of standards published by the American 

National Standards Institute. 

For the purposes of this session it is expected that you have basic knowledge from 61B and 61C of a 
statically typed language such as Java, and that you have basic programming experience already.  

Introduction: Welcome!

http://en.wikipedia.org/wiki/C_(programming_language)


Data Types and Sizes

Table taken from Wikipedia.

http://en.wikipedia.org/wiki/C_data_types


Operator Precedence in C
Note that operator overloading is not supported 
in C, beyond what is natively implemented. 

Table taken from http://www.swansontec.com/sopc.html .

http://www.swansontec.com/sopc.html


Operator Precedence in C
Note that operator overloading is not supported 
in C, beyond what is natively implemented. 

Suppose we have two unsigned ints, lo and 
hi, between 0 and 255 and we want to set a 
third unsigned integer to a 16 bit value whose 
lower order bits are lo and whose higher 
order bits are those of hi.

Table taken from http://www.swansontec.com/sopc.html .

http://www.swansontec.com/sopc.html


Operator Precedence in C
Note that operator overloading is not supported 
in C, beyond what is natively implemented. 

Suppose we have two unsigned ints, lo and 
hi, between 0 and 255 and we want to set a 
third unsigned integer to a 16 bit value whose 
lower order bits are lo and whose higher 
order bits are those of hi.

We choose to do:

unsigned int16_t i = hi << 8 + lo;

What is wrong with this?

Table taken from http://www.swansontec.com/sopc.html .

http://www.swansontec.com/sopc.html


Operator Precedence in C

Table taken from http://www.swansontec.com/sopc.html .

Note that operator overloading is not supported 
in C, beyond what is natively implemented. 

Suppose we have two unsigned ints, lo and 
hi, between 0 and 255 and we want to set a 
third unsigned integer to a 16 bit value whose 
lower order bits are lo and whose higher 
order bits are those of hi.

We choose to do:

unsigned int16_t i = hi << 8 + lo;

Instead, we choose to do the following:

unsigned int16_t i = hi << 8 | lo;

Is there anything wrong now?

http://www.swansontec.com/sopc.html


Pointers
•Consider memory to be a single huge array
 - Each cell/entry of the array has an address
 - Each cell also stores some value
•Don’t confuse the address referring to a 
memory location with the value stored there

243



Pointers
● Syntax:

a = 1008

*a = 243 

    &b = 1008

    &a = ?

    a[4] = *(a+4)

243



  #include <stdio.h>

 int main(int argc, char* argv[]) {

   int* p;      

   int a = 7;    

   p = &a;       

   int i = *p; 

   printf("%u\n", &i);

   printf("%d\n", i);

   return 0;

 }

What does this code do?



  #include <stdio.h>

 int main(int argc, char* argv[]) {

   int* p;       // Declares a pointer to an int

   int a = 7;    

   p = &a;       

   int i = *p; 

   printf("%u\n", &i);

   printf("%d\n", i);

   return 0;

 }

What does this code do?



  #include <stdio.h>

 int main(int argc, char* argv[]) {

   int* p;       // Declares a pointer to an int

   int a = 7;    // Declares an int with value 7

   p = &a;       

   int i = *p; 

   printf("%u\n", &i);

   printf("%d\n", i);

   return 0;

 }

What does this code do?



  #include <stdio.h>

 int main(int argc, char* argv[]) {

   int* p;       // Declares a pointer to an int

   int a = 7;    // Declares an int with value 7

   p = &a;       // sets the value of p to the address of a

   int i = *p; 

   printf("%u\n", &i);

   printf("%d\n", i);

   return 0;

 }

What does this code do?



  #include <stdio.h>

 int main(int argc, char* argv[]) {

   int* p;       // Declares a pointer to an int

   int a = 7;    // Declares an int with value 7

   p = &a;       // sets the value of p to the address of a

   int i = *p;   // Declares an int i whose value is the value at address p

   printf("%u\n", &i); 

   printf("%d\n", i);

   return 0;

 }

What does this code do?



  #include <stdio.h>

 int main(int argc, char* argv[]) {

   int* p;       // Declares a pointer to an int

   int a = 7;    // Declares an int with value 7

   p = &a;       // sets the value of p to the address of a

   int i = *p;   // Declares an int i whose value is the value at address p

   printf("%u\n", &i); // Prints the address of i

   printf("%d\n", i);

   return 0;

 }

What does this code do?



  #include <stdio.h>

 int main(int argc, char* argv[]) {

   int* p;       // Declares a pointer to an int

   int a = 7;    // Declares an int with value 7

   p = &a;       // sets the value of p to the address of a

   int i = *p;   // Declares an int i whose value is the value at address p

   printf("%u\n", &i); // Prints the address of i

   printf("%d\n", i);  // Prints the value of i

   return 0;

 }

What does this code do?



  #include <stdio.h>

 int main(int argc, char* argv[]) {

   int* p;       // Declares a pointer to an int

   int a = 7;    // Declares an int with value 7

   p = &a;       // sets the value of p to the address of a

   int i = *p;   // Declares an int i whose value is the value at address p

   printf("%u\n", &i); // Prints the address of i

   printf("%d\n", i);  // Prints the value of i (7)

   return 0;

 }

What does this code do?



Memory Basics
Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics
We have four regions in the address space of a 

program. They are, from highest address to lowest:

Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics
We have four regions in the address space of a 

program. They are, from highest address to lowest:

● Stack (grows downward, toward lower 

addresses)

Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics
We have four regions in the address space of a 

program. They are, from highest address to lowest:

● Stack (grows downward, toward lower 

addresses)

● Heap (grows upward, resizes dynamically)

Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics
We have four regions in the address space of a 

program. They are, from highest address to lowest:

● Stack (grows downward, toward lower 

addresses)

● Heap (grows upward, resizes dynamically)

● Static (doesn’t change in size)

Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics
We have four regions in the address space of a 

program. They are, from highest address to lowest:

● Stack (grows downward, toward lower 

addresses)

● Heap (grows upward, resizes dynamically)

● Static (doesn’t change in size)

● Code (doesn’t change)

Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics
We have four regions in the address space of a 

program. They are, from highest address to lowest:

● Stack (grows downward, toward lower 

addresses)

● Heap (grows upward, resizes dynamically)

● Static (doesn’t change in size)

● Code (doesn’t change)

Let’s cover each briefly, starting with the code 

section.

Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics: Code Section



Memory Basics: Code Section
● The code section is where the C source code from your 

program resides in memory. 



Memory Basics: Code Section
● The code section is where the C source code from your 

program resides in memory. 

● It is also alternatively known as the code segment, text 

segment, or just text.



Memory Basics: Code Section
● The code section is where the C source code from your 

program resides in memory. 

● It is also alternatively known as the code segment, text 

segment, or just text.

● This section is allocated at run time and is a fixed size.



Memory Basics: Code Section
● The code section is where the C source code from your 

program resides in memory. 

● It is also alternatively known as the code segment, text 

segment, or just text.

● This section is allocated at run time and is a fixed size.

● Generally the code segment is read-only. Architectures in 

which the code segment is not read-only support self-

modifying code.



Memory Basics: Code Section
● The code section is where the C source code from your 

program resides in memory. 

● It is also alternatively known as the code segment, text 

segment, or just text.

● This section is allocated at run time and is a fixed size.

● Generally the code segment is read-only. Architectures in 

which the code segment is not read-only support self-

modifying code.

● The code section is often placed below the heap and stack 

locations to protect it from being overwritten due to heap or 

stack overflows. 



Memory Basics: Static Data Section



Memory Basics: Static Data Section
● The static data section is where persistent variables such as 

global variables (or any variables declared outside a function) 

and string literals are stored.



Memory Basics: Static Data Section
● The static data section is where persistent variables such as 

global variables (or any variables declared outside a function) 

and string literals are stored.

● The data in the static data section can change, but the size is 

determined at compile time and cannot change.



Memory Basics: Static Data Section
● The static data section is where persistent variables such as 

global variables (or any variables declared outside a function) 

and string literals are stored.

● The data in the static data section can change, but the size is 

determined at compile time and cannot change.

● Like the code section, static data is often placed below the 

heap and stack locations to protect it from being overwritten 

due to heap or stack overflows. 



Memory Basics: Heap
Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics: Heap
● The heap segment is where dynamically allocated data 

resides. 

Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics: Heap
● The heap segment is where dynamically allocated data 

resides. 

● Addressing for the heap segment generally starts above the 

static data section and grows upward. This is done to 

maximize the amount of memory available for dynamic 

allocation while minimizing interference with the stack.

Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics: Heap
● The heap segment is where dynamically allocated data 

resides. 

● Addressing for the heap segment generally starts above the 

static data section and grows upward. This is done to 

maximize the amount of memory available for dynamic 

allocation while minimizing interference with the stack.

● The programmer must manage the heap in C-this is done 

through several functions which we will soon cover.

Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics: Heap
● The heap segment is where dynamically allocated data 

resides. 

● Addressing for the heap segment generally starts above the 

static data section and grows upward. This is done to 

maximize the amount of memory available for dynamic 

allocation while minimizing interference with the stack.

● The programmer must manage the heap in C-this is done 

through several functions which we will soon cover.

● The data in the heap can be accessed across functions. This 

is useful for data structures that require the flexibility of 

dynamic memory allocation as well as access by multiple 

functions. 

Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics: Stack
Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics: Stack
● The stack segment is where local variables reside for function 

calls. It’s a LIFO (Last In, First Out) data structure.

Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics: Stack
● The stack segment is where local variables reside for function 

calls. It’s a LIFO (Last In, First Out) data structure.

● The stack is incremented by adding stack frames, which are 

contiguous blocks of memory that contain local variables for a 

single procedure call.

Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics: Stack
● The stack segment is where local variables reside for function 

calls. It’s a LIFO (Last In, First Out) data structure.

● The stack is incremented by adding stack frames, which are 

contiguous blocks of memory that contain local variables for a 

single procedure call.

● Each stack frame contains space for the location of the calling 

function, its arguments, and space for local variables.

Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics: Stack
● The stack segment is where local variables reside for function 

calls. It’s a LIFO (Last In, First Out) data structure.

● The stack is incremented by adding stack frames, which are 

contiguous blocks of memory that contain local variables for a 

single procedure call.

● Each stack frame contains space for the location of the calling 

function, its arguments, and space for local variables.

● A stack frame contains a return address. When the function 

returns, the stack pointer jumps to the return address and the 

memory occupied by the stack frame is automatically freed.

Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics: Stack
● The stack segment is where local variables reside for function 

calls. It’s a LIFO (Last In, First Out) data structure.

● The stack is incremented by adding stack frames, which are 

contiguous blocks of memory that contain local variables for a 

single procedure call.

● Each stack frame contains space for the location of the calling 

function, its arguments, and space for local variables.

● A stack frame contains a return address. When the function 

returns, the stack pointer jumps to the return address and the 

memory occupied by the stack frame is automatically freed.

● The current position of the stack (lowest stack frame) is 

pointed to by the stack pointer.

Image taken from:
http://lambda.uta.
edu/cse5317/notes/node33
.html

http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html
http://lambda.uta.edu/cse5317/notes/node33.html


Memory Basics: Stack Tips



Memory Basics: Stack Tips
● Note that stack frames are freed as soon as the function they 

belong to returns. If you want to use things across functions, 

then you should allocate to the heap instead. 



Memory Basics: Stack Tips
● Note that stack frames are freed as soon as the function they 

belong to returns. If you want to use things across functions, 

then you should allocate to the heap instead. 

● For this reason you should take care never to return a pointer 

to a local variable. After the function returns, the pointer will be 

pointing to garbage.



Memory Basics: Stack Tips
● Note that stack frames are freed as soon as the function they 

belong to returns. If you want to use things across functions, 

then you should allocate to the heap instead. 

● For this reason you should take care never to return a pointer 

to a local variable. After the function returns, the pointer will be 

pointing to garbage.

● A stack overflow occurs when the stack pointer collides with the 

heap. If too much data is allocated locally by functions, either 

due to excessive recursion or very large local variables, stack 

overflow (and a resulting segmentation fault) can occur. You 

can avoid this by dynamically allocating large variables and 

converting recursive code into iterative code (loops).



Memory Allocation

 



Memory Allocation
● void *malloc(size_t size)

Attempts to allocate ‘size’ bytes of memory on the heap and returns a pointer to 

the beginning of the block if successful.

 



Memory Allocation
● void *malloc(size_t size)

Attempts to allocate ‘size’ bytes of memory on the heap and returns a pointer to 

the beginning of the block if successful.

● void *calloc(size_t nitems, size_t size)

Attempts to allocate ‘nitems’ * ‘size’ bytes (nitems, size bytes each), and 

initializes them all to 0.

 



Memory Allocation
● void *malloc(size_t size)

Attempts to allocate ‘size’ bytes of memory on the heap and returns a pointer to 

the beginning of the block if successful.

● void *calloc(size_t nitems, size_t size)

Attempts to allocate ‘nitems’ * ‘size’ bytes (nitems, size bytes each), and 

initializes them all to 0.

● void *realloc(void *ptr, size_t size)

Attempts to change the block of memory pointed to by ‘ptr’ to be ‘size’ bytes.

 



#include <stdio.h>

#include <stdlib.h>

#define SIZE 4

int main(int argc, char* argv[]) {

  int A[SIZE];

  int B[] = {1,2,3,4};

  int* C = malloc(4*sizeof(int));

  if(!C){  

    printf("malloc failed");

    exit(1);

  }

  free(C);

  return 0;

}

   

Declaring Arrays
Arrays in C are contiguous blocks of memory.

They do not know their own length, unlike Java arrays.



#include <stdio.h>

#include <stdlib.h>

#define SIZE 4

int main(int argc, char* argv[]) {

  int A[SIZE];       // Declare an array of ints of size SIZE

  int B[] = {1,2,3,4};

  int* C = malloc(4*sizeof(int));

  if(!C){  

    printf("malloc failed");

    exit(1);

  }

  free(C);

  return 0;

}

   

Declaring Arrays
Arrays in C are contiguous blocks of memory.

They do not know their own length, unlike Java arrays.



#include <stdio.h>

#include <stdlib.h>

#define SIZE 4

int main(int argc, char* argv[]) {

  int A[SIZE];       // Declare an array of ints of size SIZE

  int B[] = {1,2,3,4}; //Declare an array of ints with initial values

  int* C = malloc(4*sizeof(int));

  if(!C){  

    printf("malloc failed");

    exit(1);

  }

  free(C);

  return 0;

}

   

Declaring Arrays
Arrays in C are contiguous blocks of memory.

They do not know their own length, unlike Java arrays.



#include <stdio.h>

#include <stdlib.h>

#define SIZE 4

int main(int argc, char* argv[]) {

  int A[SIZE];       // Declare an array of ints of size SIZE

  int B[] = {1,2,3,4}; //Declare an array of ints with initial values

  int* C = malloc(4*sizeof(int)); // Allocate enough memory for 4 ints on heap

  if(!C){  

    printf("malloc failed");

    exit(1);

  }

  free(C);

  return 0;

}

   

Declaring Arrays
Arrays in C are contiguous blocks of memory.

They do not know their own length, unlike Java arrays.



#include <stdio.h>

#include <stdlib.h>

#define SIZE 4

int main(int argc, char* argv[]) {

  int A[SIZE];       // Declare an array of ints of size SIZE

  int B[] = {1,2,3,4}; //Declare an array of ints with initial values

  int* C = malloc(4*sizeof(int)); // Allocate enough memory for 4 ints on heap

  if(!C){  // Check if malloc succeeds

    printf("malloc failed");

    exit(1);

  }

  free(C);

  return 0;

}

   

Declaring Arrays
Arrays in C are contiguous blocks of memory.

They do not know their own length, unlike Java arrays.



#include <stdio.h>

#include <stdlib.h>

#define SIZE 4

int main(int argc, char* argv[]) {

  int A[SIZE];       // Declare an array of ints of size SIZE

  int B[] = {1,2,3,4}; //Declare an array of ints with initial values

  int* C = malloc(4*sizeof(int)); // Allocate enough memory for 4 ints on heap

  if(!C){  // Check if malloc succeeds

    printf("malloc failed");

    exit(1);

  }

  free(C);  // Free allocated memory

  return 0;

}

   

Declaring Arrays
Arrays in C are contiguous blocks of memory.

They do not know their own length, unlike Java arrays.



Structs and Typedefs
● Why use structs and typedefs?

 



Structs and Typedefs
● Why use structs and typedefs?

● Easy way to define new data structures; structs are data structures that are 

composed of simpler data types. 

 



Structs and Typedefs
● Why use structs and typedefs?

● Easy way to define new data structures; structs are data structures that are 

composed of simpler data types. 

● Similar to classes in Java/C++, but without inheritance or methods.

 



Structs and Typedefs
● Why use structs and typedefs?

● Easy way to define new data structures; structs are data structures that are 

composed of simpler data types. 

● Similar to classes in Java/C++, but without inheritance or methods.

● Typedefs are often useful to differentiate between incompatible or different 

things that can have the same basic type. An example is differentiating 

between a player’s score and his ID, which may both be integers. A 

function that takes one should not take the other.

 



#include <stdlib.h>

#include <stdio.h>

#include <string.h>

struct idCard {           

  unsigned int id;

  char[32] name;

};

   



#include <stdlib.h>

#include <stdio.h>

#include <string.h>

struct idCard {           

  unsigned int id;

  char* name;

};

   



#include <stdlib.h>

#include <stdio.h>

#include <string.h>

struct idCard {           

  unsigned int id;

  char* name;

};

typedef struct idCard idCard_t;

   



#include <stdlib.h>

#include <stdio.h>

#include <string.h>

typedef struct idCard {           

  unsigned int id;

  char* name;

} idCard_t; // Combines struct definition with typedef

   



#include <stdlib.h>

#include <stdio.h>

#include <string.h>

typedef struct idCard {           

  unsigned int id;

  char* name;

} idCard_t; // Combines struct definition with typedef

void setName(idCard_t *id, char* name) {

char* tmp = (char*) realloc(id->name, 

sizeof(char) *(strlen(name) + 1));  

if (!tmp) { //check if realloc succeeds

printf(“Realloc failed!\n”);

exit(1);

}

id->name = tmp;

strcpy(id->name, name); //copy contents of name 

//to id->name

}

   



#include <stdlib.h>

#include <stdio.h>

#include <string.h>

typedef struct idCard {           

  unsigned int id;

  char* name;

} idCard_t; // Combines struct definition with typedef

void setName(idCard_t *id, char* name) {

char* tmp = (char*) realloc(id->name, 

sizeof(char) *(strlen(name) + 1));  

if (!tmp) { //check if realloc succeeds

printf(“Realloc failed!\n”);

exit(1);

}

id->name = tmp;

strcpy(id->name, name); //copy contents of name 

//to id->name

}

   

int main() {

  idCard_t myCard;

  myCard.id = 1001; 

  setName(&myCard, “Alice”);

  printf(“myCard is (%u, %s)\n”, 

myCard.id,myCard.name);

  return 0;

}



#include <stdlib.h>

#include <stdio.h>

#include <string.h>

typedef struct idCard {           

  unsigned int id;

  char* name;

} idCard_t; // Combines struct definition with typedef

void setName(idCard_t *id, char* name) {

char* tmp = (char*) realloc(id->name, 

sizeof(char) *(strlen(name) + 1));  

if (!tmp) { //check if realloc succeeds

printf(“Realloc failed!\n”);

exit(1);

}

id->name = tmp;

strcpy(id->name, name); //copy contents of name 

//to id->name

}

   

int main() {

  idCard_t myCard;

  myCard.id = 1001; 

  setName(&myCard, “Alice”);

  printf(“myCard is (%u, %s)\n”, 

myCard.id,myCard.name);

  return 0;

}

Running produces:

myCard is (1001, Alice)



enum direction { NORTH, WEST, SOUTH, EAST } ;

typedef enum direction direction_t;

Enums 



enum direction { NORTH, WEST, SOUTH, EAST } ;

typedef enum direction direction_t;

direction_t getOppositeDirection(direction_t direction) {

  switch(direction) {

    case NORTH: return SOUTH;

    case SOUTH: return NORTH;

    case EAST: return WEST;

    case WEST: return EAST;

  }

}

int main() {

  printf("Opposite of NORTH: %d", getOppositeDirection(NORTH));

  return 0;

}

Prints:

Enums 



enum direction { NORTH, WEST, SOUTH, EAST } ;

typedef enum direction direction_t;

direction_t getOppositeDirection(direction_t direction) {

  switch(direction) {

    case NORTH: return SOUTH;

    case SOUTH: return NORTH;

    case EAST: return WEST;

    case WEST: return EAST;

  }

}

int main() {

  printf("Opposite of NORTH: %d", getOppositeDirection(NORTH));

  return 0;

}

Prints: Opposite of NORTH: 2

Enums 



A function pointer, instead of pointing to data values, points to code that is 

executable in memory. When a function pointer is dereferenced, it can be used 

to call the function that it points to, just like any other function call. This is 

known as an indirect call.

Function Pointers



A function pointer, instead of pointing to data values, points to code that is 

executable in memory. When a function pointer is dereferenced, it can be used 

to call the function that it points to, just like any other function call. This is 

known as an indirect call.

Let’s write the  map function.

Function Pointers



A function pointer, instead of pointing to data values, points to code that is 

executable in memory. When a function pointer is dereferenced, it can be used 

to call the function that it points to, just like any other function call. This is 

known as an indirect call.

Let’s write the  map function.

In Python,

map(lambda x: x*x, [1, 2, 3, 4]) returns [1, 4, 9, 16]

Function Pointers



A function pointer, instead of pointing to data values, points to code that is 

executable in memory. When a function pointer is dereferenced, it can be used 

to call the function that it points to, just like any other function call. This is 

known as an indirect call.

Let’s write the  map function.

In Python,

map([1, 2, 3, 4], lambda x: x*x) returns [1, 4, 9, 16]

How might we write this in C? 

How would we pass a function to another function?

Function Pointers



#include <stdlib.h>

#include <stdio.h>

int* map(int* input, size_t length, int(*func)(int)) {

  int* newArray;

  int i;

  if (!(newArray = malloc(length*sizeof(int)))){

    printf("Malloc Failed\n");

    exit(1);

  }

  for(i = 0; i < length; i++)

    newArray[i] = func(input[i]);

  return newArray;

}

Function Pointers



#include <stdlib.h>

#include <stdio.h>

int* map(int* input, size_t length, int(*func)(int)) {

  int* newArray;

  int i;

  if (!(newArray = malloc(length*sizeof(int)))){

    printf("Malloc Failed\n");

    exit(1);

  }

  for(i = 0; i < length; i++)

    newArray[i] = func(input[i]);

  return newArray;

}

Function Pointers



#include <stdlib.h>

#include <stdio.h>

int* map(int* input, size_t length, int(*func)(int)) {

  int* newArray;

  int i;

  if (!(newArray = malloc(length*sizeof(int)))){

    printf("Malloc Failed\n");

    exit(1);

  }

  for(i = 0; i < length; i++)

    newArray[i] = func(input[i]);

  return newArray;

}

int squared(int x) {

  return x * x;

}

Function Pointers



#include <stdlib.h>

#include <stdio.h>

int* map(int* input, size_t length, int(*func)(int)) {

  int* newArray;

  int i;

  if (!(newArray = malloc(length*sizeof(int)))){

    printf("Malloc Failed\n");

    exit(1);

  }

  for(i = 0; i < length; i++)

    newArray[i] = func(input[i]);

  return newArray;

}

int squared(int x) {

  return x * x;

}

Function Pointers

int main(){

  int array[] = {1, 2, 3, 4};

  int i;

  int* array_squared = map(array, 4, 

           &squared);

  for(i = 0; i < 4; i++)

    printf("array_squared[%d]: %d\n", i,  

           array_squared[i]);

  return 0;

}



Keywords in C
Examples of keywords: extern, const, static, if, continue, break.



Keywords in C
Examples of keywords: extern, const, static, if, continue, break.
● extern: declares the variable as global so that it can be used by other programs. This is the 

default for variables and functions at the global level. You still need the variable initialization in 
the source file or the linked source file. 



Keywords in C
Examples of keywords: extern, const, static, if, continue, break.
● extern: declares the variable as global so that it can be used by other programs. This is the 

default for variables and functions at the global level. You still need the variable initialization in 
the source file or the linked source file. 

extern int var;
int var = 10;



Keywords in C
Examples of keywords: extern, const, static, if, continue, break.
● extern: declares the variable as global so that it can be used by other programs. This is the 

default for variables and functions at the global level. You still need the variable initialization in 
the source file or the linked source file. 

● const: declares a variable as constant or ‘read-only’. A constant variable cannot be assigned 
to after initialization.

extern int var;
int var = 10;



Keywords in C
Examples of keywords: extern, const, static, if, continue, break.
● extern: declares the variable as global so that it can be used by other programs. This is the 

default for variables and functions at the global level. You still need the variable initialization in 
the source file or the linked source file. 

● const: declares a variable as constant or ‘read-only’. A constant variable cannot be assigned 
to after initialization.

extern int var;
int var = 10;

const int var = 5;
var = 10; // error



Keywords in C
Examples of keywords: extern, const, static, if, continue, break.
● extern: declares the variable as global so that it can be used by other programs. This is the 

default for variables and functions at the global level. You still need the variable initialization in 
the source file or the linked source file. 

● const: declares a variable as constant or ‘read-only’. A constant variable cannot be assigned 
to after initialization.

● static: declares a variable as only visible to the file it is in (opposite of extern). You can 
also declare static variables inside a function to make that variable keep state between 
invocations. However, this is discouraged since it is not thread-safe and confusing.

extern int var;
int var = 10;

const int var = 5;
var = 10; // error



Keywords in C
Examples of keywords: extern, const, static, if, continue, break.
● extern: declares the variable as global so that it can be used by other programs. This is the 

default for variables and functions at the global level. You still need the variable initialization in 
the source file or the linked source file. 

● const: declares a variable as constant or ‘read-only’. A constant variable cannot be assigned 
to after initialization.

● static: declares a variable as only visible to the file it is in (opposite of extern). You can 
also declare static variables inside a function to make that variable keep state between 
invocations. However, this is discouraged since it is confusing and not thread-safe.

Full list of keywords in ANSI C available here: http://tigcc.ticalc.org/doc/keywords.html

extern int var;
int var = 10;

const int var = 5;
var = 10; // error

http://tigcc.ticalc.org/doc/keywords.html


● #include <file.h>: Takes the contents of file.h and inserts it at the location of #include 
before compilation. 

Header Files



● #include <file.h>: Takes the contents of file.h and inserts it at the location of #include 
before compilation. 

● The header files should include the variable declarations required for file.c. 

Header Files



● #include <file.h>: Takes the contents of file.h and inserts it at the location of #include 
before compilation. 

● The header files should include the variable declarations required for file.c. 
● If you create your own c header files you need to “link” them when compiling.

Header Files



● #include <file.h>: Takes the contents of file.h and inserts it at the location of #include 
before compilation. 

● The header files should include the variable declarations required for file.c. 
● If you create your own c header files you need to “link” them when compiling.

Header Files

int rand_int();

./c_lib/functions.h



● #include <file.h>: Takes the contents of file.h and inserts it at the location of #include 
before compilation. 

● The header files should include the variable declarations required for file.c. 
● If you create your own c header files you need to “link” them when compiling.

Header Files

int rand_int();

./c_lib/functions.h

#include “functions.h”

int rand_int() {
  return 4;
}

./functions.c



● #include <file.h>: Takes the contents of file.h and inserts it at the location of #include 
before compilation. 

● The header files should include the variable declarations required for file.c. 
● If you create your own c header files you need to “link” them when compiling.

Header Files

int rand_int();

./c_lib/functions.h

#include “functions.h”

int rand_int() {
  return 4;
}

#include “functions.h”
#include <stdio.h>
int main() {
  printf(“%d\n”, rand_int());
  printf(“%d\n”, rand_int());
  return 0;
}

./main.c./functions.c



● #include <file.h>: Takes the contents of file.h and inserts it at the location of #include 
before compilation. 

● The header files should include the variable declarations required for file.c. 
● If you create your own c header files you need to “link” them when compiling.

Header Files

int rand_int();

./c_lib/functions.h

#include “functions.h”

int rand_int() {
  return 4;
}

#include “functions.h”
#include <stdio.h>
int main() {
  printf(“%d\n”, rand_int());
  printf(“%d\n”, rand_int());
  return 0;
}

./main.c./functions.c

To compile these files we 
need to tell gcc where to 
find the .c and .h files.



● #include <file.h>: Takes the contents of file.h and inserts it at the location of #include 
before compilation. 

● The header files should include the variable declarations required for file.c. 
● If you create your own c header files you need to “link” them when compiling.

gcc -Wall -g -I ./c_lib functions.c main.c -o main

Header Files

int rand_int();

./c_lib/functions.h

#include “functions.h”

int rand_int() {
  return 4;
}

#include “functions.h”
#include <stdio.h>
int main() {
  printf(“%d\n”, rand_int());
  printf(“%d\n”, rand_int());
  return 0;
}

./main.c./functions.c

To compile these files we 
need to tell gcc where to 
find the .c and .h files.



● #include <file.h>: Takes the contents of file.h and inserts it at the location of #include 
before compilation. 

● The header files should include the variable declarations required for file.c. 
● If you create your own c header files you need to “link” them when compiling.

gcc -Wall -g -I ./c_lib functions.c main.c -o main

Header Files

int rand_int();

./c_lib/functions.h

#include “functions.h”

int rand_int() {
  return 4;
}

#include “functions.h”
#include <stdio.h>
int main() {
  printf(“%d\n”, rand_int());
  printf(“%d\n”, rand_int());
  return 0;
}

./main.c./functions.c

To compile these files we 
need to tell gcc where to 
find the .c and .h files.

Show all warnings



● #include <file.h>: Takes the contents of file.h and inserts it at the location of #include 
before compilation. 

● The header files should include the variable declarations required for file.c. 
● If you create your own c header files you need to “link” them when compiling.

gcc -Wall -g -I ./c_lib functions.c main.c -o main

Header Files

int rand_int();

./c_lib/functions.h

#include “functions.h”

int rand_int() {
  return 4;
}

#include “functions.h”
#include <stdio.h>
int main() {
  printf(“%d\n”, rand_int());
  printf(“%d\n”, rand_int());
  return 0;
}

./main.c./functions.c

To compile these files we 
need to tell gcc where to 
find the .c and .h files.

Create gdb symbols



● #include <file.h>: Takes the contents of file.h and inserts it at the location of #include 
before compilation. 

● The header files should include the variable declarations required for file.c. 
● If you create your own c header files you need to “link” them when compiling.

gcc -Wall -g -I ./c_lib functions.c main.c -o main

Header Files

int rand_int();

./c_lib/functions.h

#include “functions.h”

int rand_int() {
  return 4;
}

#include “functions.h”
#include <stdio.h>
int main() {
  printf(“%d\n”, rand_int());
  printf(“%d\n”, rand_int());
  return 0;
}

./main.c./functions.c

To compile these files we 
need to tell gcc where to 
find the .c and .h files.

Where to find header files



● #include <file.h>: Takes the contents of file.h and inserts it at the location of #include 
before compilation. 

● The header files should include the variable declarations required for file.c. 
● If you create your own c header files you need to “link” them when compiling.

gcc -Wall -g -I ./c_lib functions.c main.c -o main

Header Files

int rand_int();

./c_lib/functions.h

#include “functions.h”

int rand_int() {
  return 4;
}

#include “functions.h”
#include <stdio.h>
int main() {
  printf(“%d\n”, rand_int());
  printf(“%d\n”, rand_int());
  return 0;
}

./main.c./functions.c

To compile these files we 
need to tell gcc where to 
find the .c and .h files.

Where to find source files



● #include <file.h>: Takes the contents of file.h and inserts it at the location of #include 
before compilation. 

● The header files should include the variable declarations required for file.c. 
● If you create your own c header files you need to “link” them when compiling.

gcc -Wall -g -I ./c_lib functions.c main.c -o main

Header Files

int rand_int();

./c_lib/functions.h

#include “functions.h”

int rand_int() {
  return 4;
}

#include “functions.h”
#include <stdio.h>
int main() {
  printf(“%d\n”, rand_int());
  printf(“%d\n”, rand_int());
  return 0;
}

./main.c./functions.c

To compile these files we 
need to tell gcc where to 
find the .c and .h files.

The output file



Makefiles



Makefiles
● Nice tutorial here: http://mrbook.org/tutorials/make/

http://mrbook.org/tutorials/make/


Makefiles
● Nice tutorial here: http://mrbook.org/tutorials/make/
● Running make from the command line will look for a file named Makefile in the working 

directory and execute it. 

http://mrbook.org/tutorials/make/


Makefiles
● Nice tutorial here: http://mrbook.org/tutorials/make/
● Running make from the command line will look for a file named Makefile in the working 

directory and execute it. 
● At its most basic level, a makefile is simply composed of:

target: dependencies
[tab] system command

http://mrbook.org/tutorials/make/


Makefiles
● Nice tutorial here: http://mrbook.org/tutorials/make/
● Running make from the command line will look for a file named Makefile in the working 

directory and execute it. 
● At its most basic level, a makefile is simply composed of:

target: dependencies
[tab] system command

● As an example of the above, suppose we wanted to run:
gcc -g -Wall main.c hello_world.c yay.c -o hello_world

http://mrbook.org/tutorials/make/


Makefiles
● Nice tutorial here: http://mrbook.org/tutorials/make/
● Running make from the command line will look for a file named Makefile in the working 

directory and execute it. 
● At its most basic level, a makefile is simply composed of:

target: dependencies
[tab] system command

● As an example of the above, suppose we wanted to run:
gcc -g -Wall main.c hello_world.c yay.c -o hello_world

● We could then write this in the makefile:
all:

gcc -g -Wall main.c hello_world.c yay.c -o hello_world

http://mrbook.org/tutorials/make/


Makefiles
● Nice tutorial here: http://mrbook.org/tutorials/make/
● Running make from the command line will look for a file named Makefile in the working 

directory and execute it. 
● At its most basic level, a makefile is simply composed of:

target: dependencies
[tab] system command

● As an example of the above, suppose we wanted to run:
gcc -g -Wall main.c hello_world.c yay.c -o hello_world

● We could then write this in the makefile:

● The target for the above makefile is all. This is the default target for a makefile, if no other is 
provided. Other targets can also often be useful, since if we modify particular files in our 
program, we can recompile only those files instead of recompiling the entire program. 

all:

gcc -g -Wall main.c hello_world.c yay.c -o hello_world

http://mrbook.org/tutorials/make/


Makefiles



● You can put comments and variables in makefiles. Anything on a line following the # character 
is a comment. Variables are assigned with a single =, and you can use a variable VARNAME by 
calling $(VARNAME) like the following:

Makefiles



● You can put variables and comments in makefiles. Anything on a line following the # character 
is a comment. Variables are assigned with a single =, and you can use a variable VARNAME by 
calling $(VARNAME) like the following:
CC = gcc

all:

$(CC) -g -Wall main.c hello_world.c yay.c -o hello_world

Makefiles



● You can put variables and comments in makefiles. Anything on a line following the # character 
is a comment. Variables are assigned with a single =, and you can use a variable VARNAME by 
calling $(VARNAME) like the following:
CC = gcc

all:

$(CC) -g -Wall main.c hello_world.c yay.c -o hello_world

● A common target is clean , which usually is written as a system command that will clean the 
output files and executables created by compilation so that a “clean” compilation can be made 
afterward. For example:

Makefiles



Makefiles
● You can put variables and comments in makefiles. Anything on a line following the # character 

is a comment. Variables are assigned with a single =, and you can use a variable VARNAME by 
calling $(VARNAME) like the following:
CC = gcc

all:

$(CC) -g -Wall main.c hello_world.c yay.c -o hello_world

● A common target is clean , which usually is written as a system command that will clean the 
output files and executables created by compilation so that a “clean” compilation can be made 
afterward. For example:
all:

$(CC) -g -Wall main.c hello_world.c yay.c -o hello_world

#this command can be invoked by typing ‘make clean’

clean:

rm -rf *.o hello_world



Makefile Example
CC = gcc
ifeq ($(shell sw_vers 2>/dev/null | grep Mac | awk '{ print $$2}'),Mac)

CFLAGS = -std=c99 -g -DGL_GLEXT_PROTOTYPES -I./include/ -I/usr/X11/include \
-DOSX
LDFLAGS = -framework GLUT -framework OpenGL \

    -L"/System/Library/Frameworks/OpenGL.framework/Libraries" \
    -lGL -lGLU -lm -lstdc
else

CFLAGS = -std=c99  -g -DGL_GLEXT_PROTOTYPES -Iglut-3.7.6-bin
LDFLAGS = -lglut -lGLU

endif

RM = /bin/rm -f 
all: main 
main: raytracer.o 

$(CC) $(CFLAGS) -o myprog raytracer.o $(LDFLAGS) 
raytracer.o: raytracer.c

$(CC) $(CFLAGS) -c raytracer.c -o raytracer.o
clean: 

$(RM) *.o myprog



GDB - GNU Debugger



● gdb is used to debug c files

GDB - GNU Debugger



● gdb is used to debug c files
● To use gdb you must compile with -g with gcc

GDB - GNU Debugger



● gdb is used to debug c files
● To use gdb you must compile with -g with gcc
● gdb supports:

- breakpoints

GDB - GNU Debugger



● gdb is used to debug c files
● To use gdb you must compile with -g with gcc
● gdb supports:

- breakpoints

- error traceback inspection

GDB - GNU Debugger



● gdb is used to debug c files
● To use gdb you must compile with -g with gcc
● gdb supports:

- breakpoints

- error traceback inspection

- stepping through the program

GDB - GNU Debugger



GDB - GNU Debugger
int main() {
  long i = 0;
  int zero_value = *(int*)i;
  return zero_value;
}



collin@cirrus:~/c_test$ gdb a.out

GDB - GNU Debugger
int main() {
  long i = 0;
  int zero_value = *(int*)i;
  return zero_value;
}



collin@cirrus:~/c_test$ gdb a.out

GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2.1) 7.4-2012.04

Reading symbols from /home/collin/c_test/a.out...done.

(gdb)

GDB - GNU Debugger



collin@cirrus:~/c_test$ gdb a.out

GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2.1) 7.4-2012.04

Reading symbols from /home/collin/c_test/a.out...done.

(gdb) run

Starting program: /home/collin/c_test/a.out

Program received signal SIGSEGV, Segmentation fault.

0x00000000004004c4 in main () at error.c:3

3         int zero_value = *(int*)i;

(gdb)

GDB - GNU Debugger
int main() {
  long i = 0;
  int zero_value = *(int*)i;
  return zero_value;
}



collin@cirrus:~/c_test$ gdb a.out

GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2.1) 7.4-2012.04

Reading symbols from /home/collin/c_test/a.out...done.

(gdb) run

Starting program: /home/collin/c_test/a.out

Program received signal SIGSEGV, Segmentation fault.

0x00000000004004c4 in main () at error.c:3

3         int zero_value = *(int*)i;

(gdb)

GDB - GNU Debugger

Shows the function, 
file, and line number of 
the error

int main() {
  long i = 0;
  int zero_value = *(int*)i;
  return zero_value;
}



collin@cirrus:~/c_test$ gdb a.out

GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2.1) 7.4-2012.04

Reading symbols from /home/collin/c_test/a.out...done.

(gdb) run

Starting program: /home/collin/c_test/a.out

Program received signal SIGSEGV, Segmentation fault.

0x00000000004004c4 in main () at error.c:3

3         int zero_value = *(int*)i;

(gdb)

GDB - GNU Debugger

Shows the function, 
file, and line number of 
the error

Shows the code that 
produced the error

int main() {
  long i = 0;
  int zero_value = *(int*)i;
  return zero_value;
}



collin@cirrus:~/c_test$ gdb a.out

GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2.1) 7.4-2012.04

Reading symbols from /home/collin/c_test/a.out...done.

(gdb) run

Starting program: /home/collin/c_test/a.out

Program received signal SIGSEGV, Segmentation fault.

0x00000000004004c4 in main () at error.c:3

3         int zero_value = *(int*)i;

(gdb) print i

$1 = 0

(gdb) 

GDB - GNU Debugger

Shows the function, 
file, and line number of 
the error

Shows the code that 
produced the error

int main() {
  long i = 0;
  int zero_value = *(int*)i;
  return zero_value;
}



collin@cirrus:~/c_test$ gdb a.out

GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2.1) 7.4-2012.04

Reading symbols from /home/collin/c_test/a.out...done.

(gdb) run

Starting program: /home/collin/c_test/a.out

Program received signal SIGSEGV, Segmentation fault.

0x00000000004004c4 in main () at error.c:3

3         int zero_value = *(int*)i;

(gdb) print i

$1 = 0

(gdb) quit

GDB - GNU Debugger

Shows the function, 
file, and line number of 
the error

Shows the code that 
produced the error

int main() {
  long i = 0;
  int zero_value = *(int*)i;
  return zero_value;
}



Reading symbols from /home/collin/c_test/a.out...done.

(gdb)

GDB - GNU Debugger
int main() {
  long i = 0;
  int zero_value = *(int*)i;
  return zero_value;
}



Reading symbols from /home/collin/c_test/a.out...done.

(gdb) break 3

Breakpoint 1 at 0x4004c0: file error.c, line 3.

(gdb) 

GDB - GNU Debugger
int main() {
  long i = 0;
  int zero_value = *(int*)i;
  return zero_value;
}



Reading symbols from /home/collin/c_test/a.out...done.

(gdb) break 3

Breakpoint 1 at 0x4004c0: file error.c, line 3.

(gdb) run

Starting program: /home/collin/c_test/a.out

Breakpoint 1, main () at error.c:3

3         int zero_value = *(int*)i;

(gdb) 

GDB - GNU Debugger
int main() {
  long i = 0;
  int zero_value = *(int*)i;
  return zero_value;
}



Reading symbols from /home/collin/c_test/a.out...done.

(gdb) break 3

Breakpoint 1 at 0x4004c0: file error.c, line 3.

(gdb) run

Starting program: /home/collin/c_test/a.out

Breakpoint 1, main () at error.c:3

3         int zero_value = *(int*)i;

(gdb) call i = &i

$1 = 140737488348512

(gdb) 

GDB - GNU Debugger
int main() {
  long i = 0;
  int zero_value = *(int*)i;
  return zero_value;
}



Reading symbols from /home/collin/c_test/a.out...done.

(gdb) break 3

Breakpoint 1 at 0x4004c0: file error.c, line 3.

(gdb) run

Starting program: /home/collin/c_test/a.out

Breakpoint 1, main () at error.c:3

3         int zero_value = *(int*)i;

(gdb) call i = &i

$1 = 140737488348512

(gdb) continue

Continuing.

[Inferior 1 (process 22438) exited with code 0140]

GDB - GNU Debugger
int main() {
  long i = 0;
  int zero_value = *(int*)i;
  return zero_value;
}



References and Credits
This presentation was possible thanks to the following references and people:

● CS61C Spring and Summer 2013 Slides and References from Dan Garcia and Justin Hsia. 
Links to the course webpages here: Summer 2013 and Spring 2013.

● The GNU C reference manual, website here.

● The C Programming Language, written by Brian Kernighan and Dennis Ritchie.

● C Traps and Pitfalls, written by Andrew Koenig. 

● Various man pages and other Unix documentation.

http://www-inst.eecs.berkeley.edu/~cs61c/su13/
http://www-inst.eecs.berkeley.edu/~cs61c/sp13/
http://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html
http://en.wikipedia.org/wiki/The_C_Programming_Language
http://en.wikipedia.org/wiki/The_C_Programming_Language
http://en.wikipedia.org/wiki/C_Traps_and_Pitfalls
http://en.wikipedia.org/wiki/C_Traps_and_Pitfalls


That’s it! Any Questions?


