
crowdsourced	guide
//	disclaimer:	currently	studying	for	cs162	midterm	and	making	a	study	guide	for	myself,

thought	I’d	share.	So	far	this	is	very	incomplete/	will	update	as	I	write	more//

**	Chapter	2	The	Kernel	Abstraction	**

Section	3	Types	of	mode	transfer

User	to	Kernel	mode:	interrupts,	system	calls,	processor	exceptions.

Kernel	to	User	mode:	new	process,	resume	after	an	interrupt,	processor	exception,	system

call;	switch	to	different	process,	user-level	upcall.

Section	4	Implementing	safe	mode	transfer

At	minimum,	the	common	sequence	must	provide:	limited	entry	points	into	kernel;	atomic

changes	to	processor	state	(mode,	stack,	program	counter,	and	memory	protection	are	all

changed	at	the	same	time	);	transparent,	restartable	execution

Section	5	Putting	it	all	together:	x86	mode	transfer

Mask	interrupts=hardware,

Save	three	key	values	(stack	pointer	-	esp,	execution	flags	eflags,	instruction	pointer

eip)=hardware,

Swtich	onto	the	kernel	interrupt	stack=hardware,

Push	the	three	key	values	onto	the	stack=hardware,

Optionally	save	the	error	code=hardware,

Invoke	the	interrupt	handler=hardware	->	handler	software



Section	6	Implementing	secure	system	calls

Locate	system	call	arguments,	validate	parameters,	copy	before	check,	copy	back	results

Section	7	Starting	a	new	process

Allocate	memory	for	PCB,	allocate	memory	for	the	process	itself,	copy	the	program	text	into

memory	allocated	for	it,	initialize	stack	(user-level),	initialize	stack(kernel-level:	for	syscalls,

exceptions,	and	interrupts)

To	start	running:	copy	arguments	into	user	memory,	transfer	control	to	user	mode.

Section	8	Implementing	upcalls

We	call	virtualized	exceptions	and	interrupts	upcalls.

In	UNIX:	signals,	in	Windows:	asynchronous	events.

Several	uses	for	upcalls:	pre-emptive	user-level	threads,	asynchronous	I/O	notification,

interprocess	communication,	user-level	exception	handling,	user-level	resource	allocation.

Similarities	with	hardware	interrupts:	types	of	signals,	signal	handling,	signal	stack,	signal

masking,	processor	state

Section	9	Case	study:	booting	an	operating	system	call

Boot	ROM	(read-only	memory	which	stores	boot	instructions)

the	boot	program	is	called	BIOS	(basic	input-output	system)

In	physical	memory:	BIOS,	boot	loader	instructions	and	data,	OS	kernel	instructions	and

data,	login	app	instructions	and	data

Section	10	Case	study:	Virtual	machines



host	operating	system	the	operating	system	providing	the	virtual	machine	abstraction

guest	operating	system	the	operating	system	running	inside	the	virtual	machine

When	the	host	kernel	starts	the	virtual	machine,	the	guest	kernel	acts	as	though	it	is	being

booted

Section	11	Summary	and	future	directions

Hardware	mechanisms	for	operating	systems:

•	privilege	levels,

•	privileged	instructions

•	memory	translation

•	processor	exceptions

•	timer	interrupts

•	device	interrupts

•	interprocessor	interrupts

•	interrupts	masking

•	system	calls

•	return	from	interrupt

•	boot	ROM

Chapter	3	The	Programming	Interface



Section	4	Case	Study:	interprocess	communication

•	Producer-consumer

•	Client-server

•	File	System

Chapter	4	Concurrency	and	Threads:

Section	4	Implementing	Kernel	Threads

Thread	Context	Switch

saves	current	running	thread’s	registers	to	the	TCB	and	stack,	then	loads	the	second

thread’s	registers

•	Voluntary:	thread_yield/thread_join-thread_exit	suspend	execution	and	start	new	thread	(

disable	interrupts	while	switching)

•	Involuntary:	interrupt	of	processor	exception	could	invoke	and	involuntary	context	switch.

Hardware	saves	current	register	state	and	executes	the	handler’s	code.

Chapter	6	Multiobject	Synchronization:

Section	5	Deadlock

Deadlock	is	a	cycle	of	waiting	among	a	set	of	threads,	where	each	threads	waits	for	some

other	thread	in	the	cycle	to	take	some	action.	Examples:	mutually	recursive	locking,	nested

waiting;

Conditions	(preventing	any	of	the	following	will	eliminate	the	deadlock)	:

•	Bounded	resources



•	No	preemption

•	Wait	while	holding

•	Circular	waiting

Banker’s	algorithm	for	avoiding	deadlock:	a	thread	states	its	maximum	resource

requirements	when	it	begins	a	task;	but	it	then	acquires	and	releases	resources

incrementally	as	the	task	runs.	The	runtime	system	delays	granting	some	requests	to	ensure

that	the	system	never	deadlocks.

•	In	a	safe	state,	for	any	possible	sequence	of	resource	requests,	there	is	at	least	one	safe

sequence	of	processing	the	requests	that	eventually	succeeds

•	In	an	unsafe	state	there	is	at	least	one	sequence	of	future	resource	requests	that	least	to

deadlock	no	matter	what	processing	order	is	tried

•	In	a	deadlocked	state,	the	system	has	at	least	one	deadlock

We	can	realize	this	idea	by	tracking:	the	current	allocation	of	each	resource	to	each	thread;

the	maximum	allocation	possible	for	each	thread,	and	the	current	set	of	available,

unallocated	resources.

Chapter	7	Scheduling:

Section	1	Uniprocessor	scheduling

First	in	First	out(FIFO):

simplest	scheduling	algorithm;	drawback	-	bad	average	waiting	time

Shortest	Job	First(SJF):

shortest	(remaining	time).	Optimizes	average	waiting	time;	however	is	impossible	to

implement	and	is	not	‘fair’.	Trade-off	between	average	response	time	vs.	variance	in	response



time	(SJF	maximizes	the	variance,	minimizes	average	response	time)

Round	Robin:

Compromise	between	FIFO	and	SJF.	Each	process	runs	for	a	time-quantum	of	time,	after

which	switches	to	the	next	one.	Yields	really	bad	average	response	time

Max-Min	fairness:

max-min	fairness	iteratively	maximizes	the	minimum	time	allocated	to	a	single	process	until

all	resources	are	assigned

Multi-level	feedback	Queue(MFQ)

•	Responsiveness

•	Low	overhead

•	Starvation-freedom

•	Background	tasks

•	Fairness

Basic	idea:	priority	levels	(	higher	priority	thread	will	always	execute	before	lower-priority

thread);	time	quanta	(	increasing	with	lowering	priority	level	);	adjust	priority:	if	runs	out	of

time	->	dump	a	level	down,	if	requests	I/O	->	bump	level	up.	To	ensure	min/max	a	thread

with	achieved	goal	of	min/max	values	doesn’t	run	until	every	thread	with	not	achived

min/max	values	has	run.

Chapter	8	Address	Translation:

Address	translation	is	conversion	from	the	address	a	process	thinks	it	is	referencing	to	the

physical	location	of	that	memory	cell.



•	Process	isolation

•	Interprocess	communication

•	Shared	code	segments

•	Program	initialization

•	Efficient	dynamic	memory	allocation

•	Cache	management

•	Program	debugging

•	Efficient	I/O

•	Memory	Mapped	Files

•	Virtual	memory

•	Checkpointing	and	restart

•	Persistent	data	structures

•	Process	migration

•	Information	flow	control

•	Distributed	shared	memory

Section	1	Address	translation	concept:

Goals:	memory	protection,	memory	sharing,	flexible	memory	placement,	sparse	addresses,

runtime	lookup	efficiency,	compact	translation	tables,	portability.



Section	2	Towards	flexible	address	translation

Segmented	memory	-	isntead	of	using	physically	contiguous	chunks	of	memory,	seemingly

continuous	memory	of	the	process	is	in	fact	mapped	to	segments	across	various	adresses.

Segmentation	fault	occurs	from	trying	to	access	an	uninitialized	memory	segment;	or	one

not	belonging	to	the	current	process.

Segmented	memory,	paged	memory,	multilevel	translation:	paged	segmentation,	multilevel

paging,	multi-level	paged	segmentation;

Chapter	9	Caching	and	Virtual	Memory:

Section	5	Replacement	policies

•	Random

•	FIFO	(can	be	worst	possible	when	repeatedly	accessing	a	large	object	which	doesnt	fit	in

cache	as	a	whole.	Forces	cache	misses	which	could	have	been	avoided)

•	MIN	Optimal	Cache	Replacement	(whichever	block	is	used	farthest	in	the	future,	thus

unattainable)

•	LRU	(Least	Recently	Used)

•	LFU	(Least	Frequently	Used)

Belady’s	anomaly:	Adding	space	to	cache	memory	can	hurt	the	cache	hit	rate.	(FIFO)


