
• For two positive functions f , g defined for positive ints:
– f = O(g) iff ∃N,C s.t. f(n) ≤ Cg(n) ∀n ≥ N
– f = Ω(g) if g = O(f)
– f = Θ(g) if f = O(g) and g = O(f)

• lim
n→∞

f(n)

g(n)
=

{
finite =⇒ f(n) = O(g(n))

non-zero =⇒ f(n) = Ω(g(n))

• alogb n = nlogb a

• Euclid’s Algorithm: if a ≥ b > 0, then gcd(a, b) =
gcd(b, a mod b)

• Fermat’s Little Theorem: If p is prime then for every
a : 1 ≤ a < p, ap−1 ≡ 1 mod p.

• Euler’s Theorem :If a, n coprime: aφ(n) = 1 mod n
• RSA

– Primes p, q; N = pq
– ed ≡ 1 mod (p− 1)(q − 1)
– Public key: (N, e). Private key: d
– Encryption x 7→ xe. Decryption y 7→ yd

• H is a universal hash function if for every two items x and
y, exactly |H|/n of the functions map x and y to the same
bucket (n = number of buckets)

• Master Theorem: Given T (n) = aT (nb) +O(nd)

• T (n) =


O(nd) if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

• FFT-recursive: A(ωj) = Ae(ω
2j) + ωjAo(ω

2j), ω = e2πi/n

• FFT-Matrix: Mn(ω)j,k = ωjk , for 0 ≤ j, k < n. Inverse:
Mn(ω)−1 = 1

nMn(ω−1)
• After DFS traversal, (u, v) is a:

– tree edge iff [pre(v), post(v)] ∈ [pre(u), post(u)]
– back edge iff [pre(u), post(u)] ∈ [pre(v), post(v)]
– cross edge iff [pre(v), post(v)] then [pre(u), post(u)]

• SCC: Vertex with highest post number is in a source com-
ponent. Can run on GR to identify sinks.

• Dijkstra /Bellman-Ford for paths. Linearize for DAGs.
• Greedy. MST: Kruskal’s, Prim’s. Huffman encoding, Horn

SAT, set cover approximation.
• Runtimes:

Dijkstra: O((|V |+ |E|) log |V |) with binary heap
Bellman-Ford: O(|V ||E|)
Kruskal: O(|E| log |V |); if E sorted, then O(|E| log∗ |V |)

• DP: Longest common subsequence, etc. Floyd-Warshall for
all-pairs shortest paths (expand permissible intermediate
nodes)

• LP: Simplex, max-flow, bipartite matching
– Standard Form: min ~c · ~x, A~x ≥ ~b, ~x ≥ ~0
– Dual LP: max yT~b, yTA ≥ ~c, ~y ≥ ~0

Ford-Fulkerson (Runtime: O(|E| × F))
• Find s−t path, p with positive residual capacity (w/ DFS)
• Let δ be minimum r(e) of edge in p
• For each edge, e = (u, v) in path

– if e in G, f(e) = f(e) + δ
– if (v, u) in G, f(v, u) = f(v, u)− δ

• compute residual capacities
• repeat; or terminate if no s − t path with pos. residual

capacity

Strategic / Two-Person Zero-Sum Games
• Row (~x) maximizes, column (~y) minimizes.
• Row 1st: miny maxx(xTAy) = maxx miny(xTAy) :Col 1st

• LP for Row: max z,
∑
xi = 1. z ≤ the expected value for

each pure strategy from column (e.g. z ≤ x2 − x3)
• LP for Col: minw,

∑
yi = 1. w ≥ the expected value for

each pure strategy from row (e.g. w ≥ y1 − y3)

Simplex
• Start at origin (assume feasible). If all coefficients ci ≤ 0

in objective function (for maximization), then optimal
• Increase xi with highest positive coefficient ci in objective

function until a constraint is hit
• Repeat with new coord system defining curr pt as origin

– yi is distance from constraint i. yi = bi − ~ai · ~x
(~ai is row i of A, i.e. the coeffs for constraint i)

– Solve for xi’s from sys of eq, sub into obj/constraints

• Origin not feasible? Use new LP. New vars zi, subtract
from LHS of each constraint. min(

∑
zi), zj ≥ 0. Start at

xj = 0, zi = max(−bi, 0). Result x values are new start
vertex for original LP.

NP complete problems
• Sat: Boolean formula in conjunctive normal form (CNF):

clauses containing OR of literals, AND of these clauses
• TSP: Is there a tour, which visits each node exactly once,

within budget?
• Rudrata Path: Path passing thru each vertex exactly

once
• Balanced Cut: With budget b for cut, partition into two

sets such that each has ≥ 1/3 of elems
• ILP: Linear programming, but constrain variables to be

integer (ZOE: constrain to be binary, A~x = ~1)
• 3D matching: Given m valid tuples, match n boys, girls,

and pets: find n disjoint triples that get along
• Independent Set: Graph, integer g: find g vertices that

are independent (no 2 share edge)
• Vertex Cover: b vertices that touch every edge
• Dominating Set: b vertices such that every edge is in the

set, or has a neighbor in the set
• Set Cover: given subsets, select b subsets such that union

is the entire set
• Clique: g vertices, each is connected to every other
• Longest Path: is there a simple path of length g or more

from s to t?
• Knapsack: Given weights and values for items, find best

knapsack value with weight at most W

Reductions
• Any problem in NP → SAT (through CSAT)
• SAT → 3SAT
• 3SAT → {Independent Set, 3D Matching}
• Independent Set → {Vertex Cover, Clique}
• 3D Matching → ZOE
• ZOE → {Subset Sum, ILP, Rudrata Cycle}
• Rudrata Cycle → TSP

Coping with NP Completeness
• Backtracking: Try an assignment, test if it meets our con-

straints. If not, then reject.
• Branch and Bound: To reject a subproblem in a minimiza-

tion problem, we must be certain that its cost exceeds that
of some other solution.

• Approximation Alg.: For a min. problem, find a solution

with factor αA = max
I

A(I)
OPT (I) away from the optimum.

• Local Search: Suppose we have a set of solutions. We
define a neighborhood structure to relate these solutions,
then we we seek the local optima.

• Matching - subset of edges that have no vertices in com-
mon, any matching is a lower bound on the optimal solu-
tion for vertex cover

1

