
Modular Arithmetic

• GCD with two numbers a and b is as follows:
a = q0b + r0
b = q1r0 + r1
r0 = q2r1 + r2
etc ...Until we get the last non zero remainder. We can then back
substitute in and find b−1moda

• Square roots: x ≡
√

(2)mod7→ x2mod7 = 2→ x = 3, x2 = 9

• Euler Fermat: aφ(n) mod n = 1, where φ(n) is the number of prime
values less than n

• Property: for prime p, ap−1 ≡ 1 mod p

• Property: If a is a square mod p, a(p−1)/2 ≡ 1 mod p

• Property: xp−2 ≡ x−1 mod p

Chinese Remainder Theorem

• x mod (pq) =< ±x mod p,±x mod q >

• Factoring: 4 mod (3 ∗ 5) = (2, 2), (2, 3), (1, 2), (1, 3), basically 4 = ±2,
then mod each factor in n

RSA

• asymmetric - has public and private keys

• ed ≡ 1mod(p− 1)(q − 1), e is public, d is private

• Encryption: c = me mod n, with n = pq

• Decryption: m = cd mod n

• Property: homomorphic (me1m
e
2 = (m1m2)e) can multiply messages,

so need to pad and otherwise avoid this.

• Breaking is equivalent to factoring, since n is known.

Diffie-hellman key exchange (w/ elliptic curve)

• Elliptic Curve E mop, P ∈ E

• Alice sends nAP to Bob

• Bob send nBP to Alice

• Now have nAnBP

Man in the Middle attack
Alice sends gA mod p which MITM intercepts and sends Bob gS mod B
Bob sends gB mod p which MITM intercepts and sends Alice gT mod p
MITM now has gAT , gSB mod p and has an encrypted channel b/w

Alice and him and Bob and him
Elgamal cryptosystem Referee
prime p, generator g
Bob
random x ∈ 1, 2, ..., (p− 2)
y = gx mod p
public key (p, g, y); secret key x
Alice
message M , random k ∈ 1, 2, ..., (p− 2)

a = gk; b = Myk mod p
transmits < a, b >
Bob
b(ax)−1 = Myk(gkx)−1 = M(gx)kg−xk = M mod p

Shamir secret sharing Steps: Make random curve of degree q-1 called
f(x) Distribute n points on curve: f(1), f(2), .. , f(n) q points determine
curve (not q-1 points!) secret is f(0), which can be any integer mod n

f(x) = aq−1x
q−1 + ...+ a1x+ a0(modm) Share f(1), f(2),...,f(n) q points

→ we can solve for aq−1, ..., a1, a0 f(0) = a0 = secret
Shamir secret sharing is (sort-of) homomorphic

f(x) = aq−1x
q−1 + ... + a1x + a0(modm)

g(x) = bq−1x
q−1 + ... + b1x + b0(modm)

h(x) = cq−1x
q−1 + ... + c1x + c0(modm)

We can define: SUM(x) =

(aq−1 + bq−1 + cq−1)xq−1 + ... + (a1 + b1 + c1)x + (a0 + b0 + c0)(modm)
SUM(0) = a0 + b0 + c0 mod m (sum of secrets)

Elliptic Curves

• Formula y2 = x3 + Ax + b mod p

• scalar multiplication same complexity as discrete log problem

• O is special point, infinity

• Number of points is bounded by |tp| < 2
√
p, where tp = p + 1− (#

points in E) and p is the prime

Addition rules and properties

• P ⊕ O = P

• (x, y)⊕ (x,−y) = O

• λ =
y2−y1
x2−x1

if P 6= Q

• λ =
3x21+A

2y1
if P = Q

• P ⊕Q = (x3, y3)

• x3 = λ2 − x1 − x2

• y3 = λ(x1 − x3)− y1

• 0P = O, 1P = P , 2P = P ⊕ P , 3P = P ⊕ P ⊕ P , etc...

DES

• feistel, 64 bit blocks, 56 bit keys

• 16 applications of feistel = blocks (L0, R0)→ (R0, L0 ⊕ F (R1, K1))

• triple DES more secure, need 257 calculations and a known plaintext
attack

• meet in the middle for double des, easily broken

AES

• Rijndael cipher - (DES diagram)

Different modes of Encryption

• CBC - split into blocks, pick init vecotre, XOR vector w/ encrypted
block, send. Decryption: XOR decrypted Ci with raw Ci−1.

• ECB - codebook. Break msg into blocks, each block has 1:1 map of
ciphertext. Good for single values, bad for repetition and if msg aligns
on blocks.

• CTR - encrypt counter rather than feedback: Oi = Ek(i),
Ci = PixorOi

• CFB - stream of cipher feedback. Ci = Pi ⊕ Ek. Ci−1 = IV

• OFB - output feedback mode. Stream encryption on noise channels.
Oi = Ek(Oi−1), Ci = PixorOi, O−1 = IV

Signatures and Hashes

• To avoid tampering, can send m,H(m), and recipient verifies hash

• If message short enough, can even sign the message itself

• When signing the hash, use known public key, ownership verified via
Certificate Authority

• probability of collision needs to be low. if n hash range and k inputs,

P(col) = P (n, k) = 1− (n!/((n− k)!)nk) = 1− e−k
2/(2n)

• preimage resistance - given h, can’t find y st H(y) = h

• second preimage resistance - given x, can’t find y 6= xstH(y) = H(x)

• collision resistance - can’t find x 6= ystH(y) = h(x)

Certificate Authority

• Verifies identity of person, plus their known public key (for encrypting
messages and verifying signatures)

• chain of trust - root CA has absolute trust

• can revoke keys when needed or compromised

Rabin Signatures
Encryption:

1. pick p,q,n s.t. pq = n

2. publish n as public key

3. pick an m in range 0..(n− 1) as message

4. c = m2 mod n. send c

Decryption:

1. Get 4 roots of c, 2 for each factor. ±mp =
√
c mod p and ±mq =

√
c

mod q

2. https : //en.wikipedia.org/wiki/Rabincryptosystem

Elgamal cryptosystem

Exponents Referee prime p, generator g Bob random
x ∈ 1, 2, ..., (p− 2) y = gx(mod p) public key (p, g, y); secret key x

Alice message M , random k ∈ 1, 2, ..., (p− 2) a = gk; b = Myk(
mod p) transmits < a, b >

Bob b(ax)−1 = Myk(gkx)−1 = M(gx)kg−xk = M(mod p)

Elliptic Curves
Referee: elliptic curve E mod p, P ∈ E
Bob random x, Q = xP
public key (E, P,Q); secret key x
Alice: message M ∈ E, random k, A = kP ;B = M ⊕ kQ, transmits

< A,B >
Bob: B ⊕ (−x)A = M ⊕ kQ⊕ (−x)kP = M ⊕ xkP ⊕ (−x)kP = M

One time Pad

• Need a pre agreed upon pad

• take message, XOR with the pad.

• perfect secrecy, but need huge keys

Pseudo-random number generation
random bits quite valuable
Linear-congruential PRNG Recommended in Knuth p large prime s0 ← random seed si+1 ← asi + b mod p

bi ← simod2
Linear-congruential PRNG problems
Linear-congruential PRNG passes most statistical tests of randomness
not good enough for secruity purposes
if we observe b1, b2, ... can infer constants PRNG equation
Another approach
use encryption:
s0 ← random seed
si+1 ← Encrypt(si)
bi ← (simod2)
several technical problems:
computational cost
cycles
Cryptographically strong PRNG
Given sequence of pseudo-random bits, intractable to predict next bit with probability greater than 50% + o(1/n)
n is parameter of cryptographic security, such as length of modulus.

Attacks on ciphers
Ciphertext only: Adversary has E(m1), E(m2), ...
Known plaintext: Adversary has E(m1)&m1, E(m2)&m2, ...
Chosen plaintext (offline): Adversary picks m1,m2, ..., Adversary sees E(m1), E(m2), ...
Chosen plaintext (adaptive): Adversary picks m1 and sees E(m1), Then adversary picks m2 and sees E(m2)
Chosen ciphertext (offline & adaptive): Like chosen-plaintext, but adversary picks E(m)
Brute force attacks We can try all possible keys, we can usually recognize valid plaintext. Unicity distance:

Minimum number of characters of ciphertext needed for a single intelligible plaintext

Homework 2
E : y2 = x3 + 2x + 1 List the points of the curve mod 3

x y2 y points

0 1 ±1 (0,1), (0,2)
1 1 ±1 (1,1), (1,2)
2 1 ±1 (2,1), (2,2)

Points:

O, (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)

Write the addition table for E mod 7
+ O (0,1) (0,6) (1,2) (1,5)

O O (0,1) (0,6) (1,2) (1,5)
(0,1) (0,1) (1,5) O (0,6) (1,2)
(0,6) (0,6) O (1,2) (1,5) (0,1)
(1,2) (1,2) (0,6) (1,5) (0,1) O
(1,5) (1,5) (1,2) (0,1) O (0,6)

Let’s find our y values:
p = 1123, x = 278
y2 = x3 + 54x + 87 mod 1123
y2 = 2783 + 54(278) + 87

y2 ≡ 216 mod 1123

Discussion 2

E : y2 = x3 + 3x + 2mod31
(2, 27)⊕ (3, 10)⊕ (3, 21)
By associativity,

((2, 27)⊕ (3, 10))⊕ (3, 21) = (2, 27)⊕ ((3, 10)⊕ (3, 21)) =
(2, 27)⊕ ((3, 10)⊕ (3, 10)) = (2, 27)⊕ O = (2, 27).

(3, 10)⊕ (2, 4)⊕ (3, 21)
By commutativity,

(3, 10)⊕ (2, 4)⊕ (3, 21) = (2, 4)⊕ (3, 10)⊕ (3, 21) By
associativity,(2, 4)⊕ (3, 10)⊕ (3, 21) =
(2, 4)⊕ ((3, 10)⊕ (3, 21)) = (2, 4)

1. Relax, GPA does not matter anymore.
2. Think of the cash you’ll make after graduation.
3. Do the best you can, and have no regrets!

Author: Ivan Smirnov (http://ivansmirnov.name), collaborated with Tsion Behailu (http://tsion.me)

2

