Modular Arithmetic

- GCD with two numbers a and b is as follows: $a = q_0b + r_0$ $b = q_1r_0 + r_1$ $r_0 = q_2r_1 + r_2$ etc...Until we get the last non zero remainder. We can then back substitute in and find $b^{-1}moda$
- Square roots: $x \equiv \sqrt{(2)mod7} \rightarrow x^2 mod7 = 2 \rightarrow x = 3, x^2 = 9$
- Euler Fermat: $a^{\phi}(n) \mod n = 1$, where $\phi(n)$ is the number of prime values less than n
- Property: for prime $p, a^{p-1} \equiv 1 \mod p$
- Property: If a is a square mod p, $a_{(p-1)/2} \equiv 1 \mod p$
- Property: $x^{p-2} \equiv x^{-1} \mod p$

Chinese Remainder Theorem

- $x \mod (pq) = < \pm x \mod p, \pm x \mod q >$
- Factoring: 4 mod (3*5) = (2,2), (2,3), (1,2), (1,3), basically $4 = \pm 2$, then mod each factor in n

RSA

- asymmetric has public and private keys
- $ed \equiv 1mod(p-1)(q-1)$, e is public, d is private
- Encryption: $c = m^e \mod n$, with n = pq
- Decryption: $m = c^d \mod n$
- Property: homomorphic $(m_1^e m_2^e = (m_1 m_2)^e)$ can multiply messages, so need to pad and otherwise avoid this.
- Breaking is equivalent to factoring, since n is known.

Diffie-hellman key exchange (w/ elliptic curve)

- Elliptic Curve E mop, $P \in E$
- Alice sends $n_A P$ to Bob
- Bob send $n_B P$ to Alice
- Now have $n_A n_B P$

Man in the Middle attack

Alice sends $q^A \mod p$ which MITM intercepts and sends Bob $g^S \mod B$ Bob sends $g^B \mod p$ which MITM intercepts and sends Alice $g^T \mod p$ MITM now has $g^{AT}, g^{SB} \mod p$ and has an encrypted channel b/w Alice and him and Bob and him **Elgamal cryptosystem** Referee prime p, generator g Bob random $x \in 1, 2, ..., (p-2)$ $y = g^x \mod p$ public key (p, g, y); secret key x Alice message M, random $k \in 1, 2, ..., (p-2)$ $a = g^k; b = My^k \mod p$ transmits < a, b >Bob $b(a^x)^{-1} = My^k (g^{kx})^{-1} = M(g^x)^k g^{-xk} = M \mod p$ **Shamir secret sharing** Steps: Make random curve of degree q-1 called f(x) Distribute n points on curve: f(1), f(2), ..., f(n) q points determine curve (not q-1 points!) secret is f(0), which can be any integer mod n $f(x) = a_{q-1}x^{q-1} + ... + a_1x + a_0 (modm)$ Share f(1), f(2),...,f(n) q points \rightarrow we can solve for $a_{q-1}, ..., a_1, a_0$ $f(0) = a_0 =$ secret Shamir secret sharing is (sort-of) homomorphic $f(x) = a_{q-1}x^{q-1} + ... + a_1x + a_0 (modm)$ $g(x) = b_{q-1}x^{q-1} + ... + b_1x + b_0 (modm)$ $h(x) = c_{q-1}x^{q-1} + ... + c_1x + c_0 (modm)$ We can define: $SUM(x) = (a_{q-1} + b_{q-1} + c_{q-1})x^{q-1} + ... + (a_1 + b_1 + c_1)x + (a_0 + b_0 + c_0) (modm)$ $SUM(0) = a_0 + b_0 + c_0 \mod m$ (sum of secrets)

Elliptic Curves

- Formula $y^2 = x^3 + Ax + b \mod p$
- scalar multiplication same complexity as discrete log problem
- O is special point, infinity
- Number of points is bounded by $|t_p|<2\sqrt{p},$ where $t_p=p+1-~(\#$ points in E) and p is the prime

Addition rules and properties

- $P \oplus O = P$
- $(x, y) \oplus (x, -y) = O$
- $\lambda = \frac{y_2 y_1}{x_2 x_1}$ if $P \neq Q$
- $\lambda = \frac{3x_1^2 + A}{2u_1}$ if P = Q
- $P \oplus Q = (x_3, y_3)$
- $x_3 = \lambda^2 x_1 x_2$
- $y_3 = \lambda(x_1 x_3) y_1$
- 0P = O, 1P = P, $2P = P \oplus P$, $3P = P \oplus P \oplus P$, etc...

DES

- feistel, 64 bit blocks, 56 bit keys
- 16 applications of feistel = blocks $(L_0, R_0) \rightarrow (R_0, L_0 \oplus F(R_1, K_1))$
- $\bullet\,$ triple DES more secure, need 2^{57} calculations and a known plaintext attack
- meet in the middle for double des, easily broken

AES

• Rijndael cipher - (DES diagram)

Different modes of Encryption

- CBC split into blocks, pick init vecotre, XOR vector w/ encrypted block, send. Decryption: XOR decrypted C_i with raw C_{i-1} .
- ECB codebook. Break msg into blocks, each block has 1:1 map of ciphertext. Good for single values, bad for repetition and if msg aligns on blocks.
- CTR encrypt counter rather than feedback: $O_i = E_k(i)$, $C_i = P_i xor O_i$
- CFB stream of cipher feedback. $C_i = P_i \oplus E_k$. $C_{i-1} = IV$
- OFB output feedback mode. Stream encryption on noise channels.
 O_i = E_k(O_{i-1}), C_i = P_ixorO_i, O₋₁ = IV

Signatures and Hashes

- To avoid tampering, can send m, H(m), and recipient verifies hash
- If message short enough, can even sign the message itself
- When signing the hash, use known public key, ownership verified via Certificate Authority
- probability of collision needs to be low. if n hash range and k inputs, $P(col) = P(n,k) = 1 - (n!/((n-k)!)n^k) = 1 - e^{-k^2/(2n)}$
- preimage resistance given h, can't find y st H(y) = h
- second preimage resistance given x, can't find $y \neq xstH(y) = H(x)$
- collision resistance can't find $x \neq ystH(y) = h(x)$

Certificate Authority

- Verifies identity of person, plus their known public key (for encrypting messages and verifying signatures)
- chain of trust root CA has absolute trust
- $\bullet\,$ can revoke keys when needed or compromised

Rabin Signatures

Encryption:

- 1. pick p,q,n s.t. pq = n
- 2. publish n as public key
- 3. pick an m in range 0..(n-1) as message
- 4. $c = m^2 \mod n$. send c

Decryption:

- 1. Get 4 roots of c, 2 for each factor. $\pm m_p = \sqrt{c} \mod p$ and $\pm m_q = \sqrt{c} \mod q$
- 2. https://en.wikipedia.org/wiki/Rabin_cryptosystem

Elgamal cryptosystem

Exponents Referee prime p, generator g Bob random $x \in 1, 2, ..., (p-2) \ y = g^x (\mod p)$ public key (p, g, y); secret key x Alice message M, random $k \in 1, 2, ..., (p-2) \ a = g^k; \ b = My^k (\mod p)$ transmits $\langle a, b \rangle$ Bob $b(a^x)^{-1} = My^k (g^{kx})^{-1} = M(g^x)^k g^{-xk} = M(\mod p)$

Elliptic Curves

Referee: elliptic curve $E \mod p$, $P \in E$ Bob random x, Q = xPpublic key (E, P, Q); secret key xAlice: message $M \in E$, random k, A = kP; $B = M \oplus kQ$, transmits $\langle A, B \rangle$ Bob: $B \oplus (-x)A = M \oplus kQ \oplus (-x)kP = M \oplus xkP \oplus (-x)kP = M$

One time Pad

- Need a pre agreed upon pad
- take message, XOR with the pad.
- $\bullet\,$ perfect secrecy, but need huge keys

Pseudo-random number generation

random bits quite valuable

Linear-congruential PRNG Recommended in Knuth p large prime $s_0 \leftarrow$ random seed $s_{i+1} \leftarrow as_i + b \mod p$ $b_i \leftarrow s_i mod2$

- Linear-congruential PRNG problems Linear-congruential PRNG passes most statistical tests of randomness
- not good enough for secruity purposes
- if we observe $b_1, b_2, ...$ can infer constants PRNG equation
- Another approach
- use encryption:
- $s_0 \leftarrow \text{random seed}$
- $s_{i+1} \leftarrow Encrypt(s_i)$
- $b_i \leftarrow (s_i mod2)$
- several technical problems:
- computational cost
- cycles
- Cryptographically strong PRNG

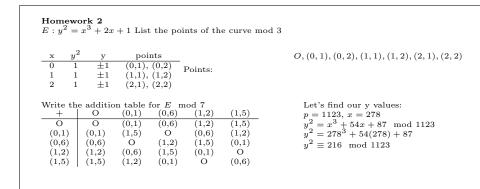
Given sequence of pseudo-random bits, intractable to predict next bit with probability greater than 50% + o(1/n)n is parameter of cryptographic security, such as length of modulus.

Attacks on ciphers

Ciphertext only: Adversary has $E(m_1), E(m_2), \dots$

Known plaintext: Adversary has $E(m_1)\&m_1, E(m_2)\&m_2, \dots$

- Chosen plaintext (offline): Adversary picks $m_1, m_2, ...,$ Adversary sees $E(m_1), E(m_2), ...$
- Chosen plaintext (adaptive): Adversary picks m_1 and sees $E(m_1)$, Then adversary picks m_2 and sees $E(m_2)$
- Chosen ciphertext (offline & adaptive): Like chosen-plaintext, but adversary picks E(m)
- Brute force attacks We can try all possible keys, we can usually recognize valid plaintext. Unicity distance:
- Minimum number of characters of ciphertext needed for a single intelligible plaintext



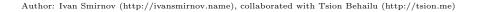
Discussion 2

 $\begin{array}{l} E:y^2=x^3+3x+2mod31\\ (2,27)\oplus(3,10)\oplus(3,21)\\ \text{By associativity,}\\ ((2,27)\oplus(3,10)\oplus(3,21)=(2,27)\oplus((3,10)\oplus(3,21))=\\ (2,27)\oplus((3,10)\oplus(3,10))=(2,27)\oplus O=(2,27). \end{array}$

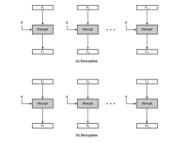
 $\begin{array}{c} (3,10) \oplus (2,4) \oplus (3,21) \\ \text{By commutativity,} \\ (3,10) \oplus (2,4) \oplus (3,21) = (2,4) \oplus (3,10) \oplus (3,21) \text{ By} \\ \text{associativity,} (2,4) \oplus (3,10) \oplus (3,21) = \\ (2,4) \oplus ((3,10) \oplus (3,21)) = (2,4) \end{array}$

1. Relax, GPA does not matter anymore.

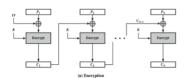
- 2. Think of the cash you'll make after graduation.
- 3. Do the best you can, and have no regrets!



Electronic Codebook Book



Cipher Block Chaining (CBC)



Counter (CTR)

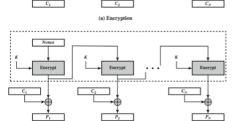
Counter 1

Counter 2

(a) Encryption

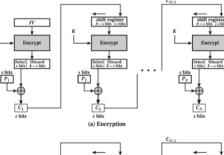
Counter 2

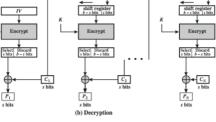
(b) Decryptio

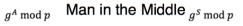


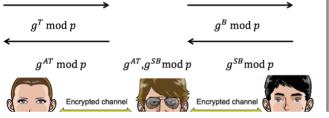
s-bit Cipher FeedBack (CFB-s)

(b) Decryption









Counter N

Counter N

Output FeedBack (OFB)

Nonce

Enervo