CS162 Midterm 2 Study Guide

Advanced Synchronization
How is a Condition Variable different from a semaphore?

A Condition Variable is stateless, whereas a semaphore contains a value.

Both can be used to signal a thread as a result of an action by another thread, but the
semaphore can also be used for mutual exclusion.

A Conditional Variable can only be used in conjunction with a lock. Operations on
the CV should only be performed when the thread is holding the lock. The lock
provides mutual exclusion.

A semaphore is a more primitive, and hence more powerful and less structured,
concept.

What operations are defined on Condition Variable? When can they be invoked?

Wait atomically releases the lock, relinquishes the processor, and reacquires the
lock before the thread is rescheduled. Typically, the resumption from wait will be
the result of a signal or broadcast, but need not be.

Signal wakes up one waiter (if any); Broadcast wakes up all.

What must the kernel do to make cond_wait appear to the user thread as having
atomically released the lock and reacquired it upon signal?

Release the lock, block the thread, schedule other threads, and reacquire the lock
before allowing the original thread to be ready for scheduling.

Why should a user thread that waits on a CV use it in a loop that checks the signal
condition after resuming from cond_wait?

It may be a spurious wake up, perhaps due to broadcast or simply because the
kernel decided to resume the thread.

What are the shortcomings of using interrupt disable/enable to implement locks
(and semaphores)?

[t disables all interrupt processing, even though the lock may have nothing to do
with handling interrupts, which may cause interrupt handling to be delayed or
missed entirely.

[t is not available at user level, so all thread synchronization requires a full round-
trip through the kernel.

It is not sufficient for multiprocessors, since another processor may access memory
state associated with the lock.

What are examples of atomic read-modify-write instructions?

Test-and-set, swap, compare-and-swap. (Others we didn’t discuss include fetch-
and-increment and a special pair load-locked / store-conditional.)

How can atomic read-modify-write instructions be used to provide a faster
implementation of locks that also works on multiprocessors.

A variable, i.e., value held in memory, is used as a guard for manipulating the lock.
Test-and-set on the guard provides mutually exclusive access to the state of the lock
- while contenders busy-wait on the guard. So the guard protects the lock, whereas
the lock protects an arbitrary object that is manipulated by one or more threads.
Access to the guard can be performed at user level, so an entry into the kernel is
only necessary if the lock is busy and, hence, the acquiring thread needs to be put to
sleep until the lock is released.

Virtual Addressing, Address Translation, Virtual Memory

What is the relationship between a virtual address space and a physical address
space?

A thread operates in a virtual address space that contains all of its logical state - its
code and data, whether that data be static, stack, or heap based - independent of
where that state is held in the physical storage hierarchy. A machine provides a
physical address space that contains regions of physical memory and regions of
device state. An address translation mechanism translates the per-process virtual
addresses referenced by threads to physical addresses in the machine in a manner
that corresponds to how process state is resident in the storage hierarchy.

How are the following operating system functions implemented all or in part
through the address translation mechanism?

* Protection

* Multiprogramming

* [solation

* Memory Resource Management

* [/O0 efficiency

e Sharing

* Inter-process communication

* Debugging

* Demand Paging

Protection: a thread can only reference those resources that are made accessible to
it through its virtual address space. In particular, it cannot in general access the

state of other processes, the state of the kernel, or the state of physical devices.
Exceptions to each of these restrictions are possible in a controlled fashion.

Multiprogramming: Only the active portion of each process’ state (it’s current
working set) need to be resident in physical memory; the rest can be held in
secondary storage. Upon access to a non-resident page, it can be made resident and
mapped into the process virtual address space by updating the page table. The
resources associated with a process or program can be switched rapidly by simply
changing which page table is active.

[solation: The protection mechanisms described above isolate processes from each
other and the kernel from user processes by limiting what each can access.

Memory Resource Management: Physical memory is easily allocated because it can
be treated as a collection of fixed sized blocks (i.e., frames) and any page from any
process can be placed in any frame.

[/0 efficiency: While 1/0 is being performed on behalf of one thread, other threads
can be easily run. In addition, access to [/0 buffers can be transferred between user
and kernel by protecting or remapping pages, rather than copying data.

Sharing: processes can share storage resources by mapping the physical resource,
i.e.,, the memory region, into their respective virtual address spaces. Similarly,
kernel and user can share in a protected fashion by selectively controlling access
permissions. For example, a I/0 buffer may be read-only to the user and read-write
to the system.

Interprocess communication: processes can communicate with one another through
message exchanges, e.g., sockets or RPC, or through shared address space as
described above. Even if they are using message-based communication the buffers
underlying it may be implemented using shared memory. Or processes may
communicate through writing and reading files, and files may be mmap’d into the
virtual address space.

Debugging: A debugging process can be used to debug another process by
“attaching” to that processes address space.

Demand Paging: When a thread accesses a non-resident page in its process’ virtual
address space a page-fault occurs, suspending the current instruction and allowing
the operating system page fault handler to load the corresponding page from
secondary storage to physical memory and map it into the process address space
before retrying the instruction.

How does a virtual address space eliminate the need for relocation upon loading an
executable program?

The process can execute in a virtual address space as if its addressing starts at zero,
thus the references within the code and data sections of the file can be used directly
without any offset adjustments.

What does an operating system need to do to “exec” a program in a VAS?

Create a process for it, i.e., allocate and initialize a data structure (such as a Process
Control Block) to hold process-specific information, create and initialize a page table
(PT) for it, record the PTs location in the PCB, initialize file descriptors, set up code
and static data regions of the VAS as backed by executable file, create an initial set of
registers and transfer control to it. The stack and heap regions may be set up as
well, or the language run time library may set those when the program first
executes, i.e., before calling main.

How is paging different from segmentation?

Paging breaks up the virtual address space into fixed size blocks, regardless of
logical structure. Segmentation divides the address space into variable sized extents
that correspond to logical units in the program.

What is fragmentation?

Fragmentation is when unusable regions of storage emerge because of how
resources are allocated. Iterative allocation and de-allocation of variable length
blocks, such as segments in memory, can give rise to external fragmentation. There
may be many small, unused chunks of storage between used ones, and the aggregate
unused space may be enough to service further requests, but no single block is big
enough to service the requests. Fixed size allocation, such as paging, eliminates
external fragmentation but introduces internal fragmentation, because requests
must be rounded up to an integral multiple of the page size.

How is an N-bit virtual address translated into a physical address using a one level
page table for pages of 2K bytes?

The upper N-K bits form the page number (VPN) within the virtual address space,
while the lower K bits form the offset within a page. The N-K bit VPN is used as an
index into an array, the page table, to access entry PT[VPN]. The page table entry
contains flag bits that indicate if the corresponding page is resident in memory and
if so, its frame number. Thus,
vpn = VA >> k
off = VA & (2°k — 1)
if PT[vpn].valid
PAS = PT[vpn].frame << k + off
else
Page fault

How are program segments typically represented in a large, flat virtual address
space?

Dynamic segments, such as stack, heap, and dynamically linked library code, are
allocated regions in the address space with ample room between them to allow
them to grow. The operating system may recognize that certain regions should
grow automatically, such as the stack, while others should require an explicit
request to grow, e.g., sbrk to expand the heap.

How large is a single level page table or a N-bit address space with pages of 2K bytes
and an M-bit physical memory space, assuming that all of the VAS is represented?
For concreteness, what does this mean for a 32-bit address, 8 KB pages, and 32 MB
of memory? For a 48-bit address, 8 KB pages, and 1 GB of memory?

Each entry must be big enough to hold a M-K bit frame number field. This requires
32-13 =19 bits for the small case and 48-13 = 35 bits in the large case. Thus, in the
small case it fits easily in a 32-bit word, whereas in the large one it does not.
However, such a large address space is almost always found on machines with 64-
bit words.

The page table has 2N-Kentries of at least M-K bits each. This means 512K entries or
2 MB in the small case and 32G entries or 256 GB (with 8B entries) in the large case.
And this is per process. Thus, the address translation mechanism would occupy an
excessive amount of physical memory.

Consider a 48-bit virtual address translated into a physical address using a three
level page table for pages of 2X bytes with page table entries 8 bytes in size. What
would be a natural page size for such a system? What is the memory footprint for
the translation to map four dense regions of, say, 100 MBs each, i.e., segments?

A page-size chunk of page table entries contains 2K-3 entries. For 8KB pages and 8
byte entries, this would be 1024 entries per chunk. The offset portion utilizes the
lower K bits of the address, thus we have 48-K bits to translate. Each level naturally
takes care of K-3 bits. So we need 3(K-3) + K ~ 48. So a natural choice of K would
be 14 or 15.

At K=14, we have 16 KB pages and 2K PTEs per page sized chunks (11 bits).
Working from the bottom up, each level 3 PTE chunk maps 32 MBs (25 bits), each
level 2 chunk maps up to 32 GB (36 bits), and two level 1 pages are needed to map
the top 12 bits.

Each region would require four level 3 PTE chunks, each of these will require one
level 2 chunk, and there are two level 1 chunks, so a total of 18 pages x 16 KB, so less

than half a MB to map these 400 MBs of data pages.

What would the TLB hold in such a situation as the one above?

The TLB caches overall translations for pages, crossing over multiple levels of page
table translations. Thus, each TLB entry would hold the 48-14 = 34 bit vpn as a tag
and the physical frame number at which that page is resident, as well as tag bits.

How many page faults might occur in accessing an address in the worst case? In a
typical case?

Three. The root PTE pages must always be resident. However, the level 2 PT may
be paged, so a page of PTEs might need to be made resident. The level 3 PT page it
references may need to be made resident. And then the actual page of process
address space may need to be paged in.

On the other hand, if we consider the four large regions scenario described above, a
region has to grow substantially before an additional level 3 PTE page will need to
be paged in and a new level 2 would only be needed if a new region started to be
used. Thus, in practice it is rare that anything more than the actual user page will
need to be paged in.

Using paging, what is the unit of storage that can be shared between processes?
What about with segmentation? What needs to happen if some portion of the
shared region was swapped out to secondary storage?

With paging, an integral number of pages must be shared. So the smallest unit of
sharing is a page. With segmentation, a variable length extent can be shared.

When using paging to support sharing, if a shared page is swapped out all page
tables that reference the page need to be updated and any TLB entries that refer to
it must be invalidated. With segmentation, the entire segment must be swapped and
the segment tables of all processes that share the segment must be updated.

Why is it important to have a high degree of associativity in the TLB?

Each TLB entry maps an entire page. A single instruction will typically refer to at
least two pages, the one holding the instruction itself and, if the instruction does a
load or store, the one holding the data. More complex instructions, such as those in
the x86 architecture, may access multiple memory locations.

When does the operating system need to flush or invalidate TLB entries?

Unlike memory caches, TLB consistency is not typically handled in hardware. Thus,
whenever the OS switches processes or updates a PTE, it may need to invalidate
entries in the TLB. In some machines, invalidation on process switch is avoided by
including the process identifier (PID) in the TLB entry? This does raise a
complication that if two processes share a page, it will appear in multiple entries in
the TLB.

What happens on a TLB miss? With a two-level page table, how many memory
accesses are required? What should we expect the TLB miss time to be compared to
a memory access time?

On a TLB miss, the memory management unit must traverse the address translation
structure to obtain the physical address and enter the VPN->PFN (physical frame
number) translation. On a two-level page table, this involves two memory accesses
(and possibly one page fault) to access the two relevant PTEs. However, both PTEs
are likely to be cached (and resident) so the TLB miss penalty can be much smaller
than two memory accesses.

What is the difference between a memory cache and a TLB?

A cache transparently holds the data resident in particular physical memory
addresses. Portions of the physical address form the cache tag. Misses are handled
transparently by the cache controller. The cache is transparent to operating system
and user software, some memory references just take less time than other. The TLB
is a specialized cache for page table entries. It is updated upon virtual to physical
address translation when the memory management unit accesses page tables. It is
transparent to user software, but requires management by OS software.

What is the average access time for any level of the storage hierarchy?

Ave Access Time = Hit Time + Miss Penalty * (1 - Hit Rate)

What are the degrees of freedom in cache design?

Cache size, Block Size, Associativity, Write Policy, Replacement Policy

How is demand-paged virtual memory similar to and different from caching?

Both provide automatic management of the storage hierarchy taking advantage on
temporal and spatial locality. Caches are handled entirely in hardware, transparent
to software, and have a fixed organization. Virtual memory involves a collaboration
of hardware and software, where substantial operating system software is require
to handle a miss, i.e., a page fault. For a memory cache, the miss penalty may be 10
to 100 times the hit time, whereas in virtual memory management it is on the order
of a million times the hit time. Paging treats memory essentially as a fully
associative cache for the virtual address space that is backed by disk.

Where does caching arise in operating systems?

* Operating system data structures can be designed to improve memory cache
performance (or not).

* Thread scheduling can impact memory cache performance. Short time
quanta and frequent switching can reduce cache performance.

* TLBs are a cache of page tables.

* File systems cache disk blocks, including blocks containing part of the file
system structure.

¢ Virtual memory caches pages of the virtual address space in physical
memory.

* Domain name system is a cache of hostname to IP address translations. And
there are many more.

When a page fault handler needs to evict a page from memory, how does it find the
corresponding page on disk to swap it into?

Typically, the OS maintains a table with an entry for every memory frame that
records the VPN for the page that is resident in the frame. Otherwise, it would have
to search the entire page table to find the page that occupies the frame.

When a page fault handler is swapping in a page, how does it pick of memory frame?

[t maintains a freel-list of unused frames. This might be a bit vector of frames or it
might use the frame memory to hold the list. It seeks to push unused pages to disk
so that there will be some free frames should it need one.

What actions and precautions must a system call take when a user virtual address is
passed as an argument to the call, e.g,, a pointer to a data buffer?

First it must translate the user virtual address to something that the OS can access.
The OS typically does not operate through the user page table. It may even operate
in a “physical address mode.” Thus, it may need to consult the user page table
explicitly to locate the desired physical address. In addition, it cannot trust the user
pointer. The errant or malicious user may attempt to pass a pointer that would be
invalid for it to access, but which the OS could access, such as a pointer into kernel
memory. Or, it may try to crash the OS by passing a bad pointer. So the syscall must
safety check all user pointers.

File Systems

What are the stages in operating system processing of a file read or write system
call?

* Dispatch to the filesystem syscall handler

e Validate the user syscall args (handle, buffer, length)

* Consult the file descriptor for the handle passed to the call to obtain file
number (or inode number) and position.

* Consult the file index structure to determine the driver and disk blocks for
the [/0 transfer

* Invoke the device driver to perform the transfer.

* Driver issues commands to the /0 controller for the disk, SSD, or other
physical device containing the block.

e Itissues commands to transfer data between memory and the controller.

* Detect completion of the I/0 transfer and complete the file system operation.

* Complete the syscall.

What are the physical components of the [/0O system?

* A wide range of physical devices, including storage, displays, networks,
audio, keys, pointers, printers, etc.

¢ Ahierarchy of busses: memory bus => high speed interconnection bus (e.g.,
PCI express) => lower speed [/0 busses (SCS], IDE, Serial, USB, ...). The
bandwidths of these vary by over 12 orders of magnitude.

* [/0 controllers associated with busses and with devices.

How does operating system software on the processor interact with I/0 controllers?
* Memory mapped I/0 (reading and writing controller registers)
* Direct Memory Access (block transfer between memory and controller)
* Interrupts (asynchronous notification from the controller)

What determines the bandwidth achieved on an I/0 operation?

The peak data transfer is determined by the transfer rate of the bus, the controller,
or the device - whichever is least forms the bottleneck.

The effective bandwidth is determined both by the peak transfer bandwidth and the
delays associated with initiating and completing the transfer, i.e., the startup costs.
These are often fixed costs, independent of the transfer length.

Thus, the time to perform a [/O operation of size n is of the form T(n) =S + n/B,
where S is the startup cost and B is the bandwidth.

The effective bandwidth is BW(n) =n/T(n) =n / (S+n/B) =B * (1/(1+ SB/n)).

What are figures of merit for the performance of /0 operations?
Response time (latency) and throughput (bandwidth)
What software factors can impact [/O performance?

* Bursts of requests may create queuing delays, further increasing the startup
time and decreasing effective bandwidth.

* The sequence of requests may be well-suited to the underlying device (e.g.,
sequential reads of disk blocks) or not.

e Ifthere are multiple outstanding requests, driver software may be able to re-
order and schedule operations to make them better suited to the device, e.g.,
C-SCAN disk transfer scheduling.

If a system processes 1,000 tasks per second and on average tasks take 2.5 seconds,
how many tasks are expected to be on-going within the system at any time?

2,500. Little’s law. And “the system” could be a web server, a network, a cafeteria or
just about anything.

How does the RPM of a disk influence its performance? What performance factors
are independent of RPM?

The transfer rate is determined by the velocity of the surface under the head x the
recording density of the information on the surface. Of course, this is not uniform
since the outer parts of the disk travel faster.

The rotational latency is the time for the desired sector to come under the head. On
average, this would be half a rotation. For example, 7200 RPM is 8.3 ms per
revolution. 10000 RPM drops this to 6 ms.

The other factor is the time to position the head to the cylinder containing the
desired sector.

What are the benefits and drawbacks of the following disk scheduling algorithms:
FIFO, Shortest-seek-first, SCAN, C-SCAN?

FIFO may experience unnecessary seek delays, but respects the request order and
thus provides stronger guarantees of what happens before what?

Shortest seek time first is a simple greedy schedule, but does not respect order and
is not optimal and can lead to starvation.

SCAN and C-SCAN are extremely simple scheduling algorithms that retain fairness.
They do not respect issue order. C-Span, with it unidirectional service, tends to
accumulate clusters of transfers in areas of the disks while servicing other.

When are the effects of sophisticated scheduling algorithms most pronounced?

At intermediate to high load levels. At low load there will seldom be outstanding
request in the queue, so little opportunity for optimization. It reduces to FIFO. At
very high levels, there will be such a large backlog that delays will be high regardless
of level, but seek avoidance will have dramatic effects and fairness most important.
This is where C-SCAN provides both performance and resilience.

What are the major components of a file system?

User level 1/0 library that issues system calls and provides the APL.

System level file descriptors that maintain information about open files for
the process.

Directory structure that is used to translate a file pathname to a file number
(or inode number) and to provide access control.

File index structure that is used to translate file number plus position into
disk block.

Block storage which holds file data blocks, the file index structure, and
directory structures (in special files).

Free list, which records which blocks in a volume are used or free.

Most operating systems separate open/close file operations from read /write
operations. What happens on open in Unix-like systems?

The directory structure is consulted to obtain the inode number, if the exists,
and validate user permissions to access the file. If not, a directory entry and
an inode is created.

A file descriptor is created and associated with the process, which contains
either the inode index or a copy of the inode itself.

A handle on this file descriptor is returned to the user.

How does the inode structure used in FFS reflect the observed properties of how
applications use files?

The vast majority of files are small, but most of the storage space is occupied
by very large files.

Inodes have several (12) pointers direct to disk blocks for the common case

of small files.

For larger files, it has a indirect pointer to a block of pointers to disk block, a
double indirect pointer, and a triple indirect pointer.

In what ways does NTFS go even further in optimizing the observed properties of

files?

The data for very small files can be stored in the index entry itself, i.e., in the Master
File Table.

How can a file system design enable efficient use of the underlying disk hardware?

Allocate data blocks such that if the file grows it will tend to be laid out
sequentially on disk, rather than being scattered around. This may involve
leaving free space at the end of the file for it to grow into, or by copying the
file from time to time into contiguous groups of blocks.

* Co-locate parts of the file system that might be accessed closely together in
time. Rather than separating the directory, index, blocks and freelist into
different regions, group parts of them together into block groups.

* Co-locate files that are in the same directory and try to keep them close to the
directory entries as well.

How might these change for SSD storage?

On an SSD it is no longer as important to co-locate objects to reduce seeks and
rotational latency, but it is important to be able to group transfers into large
contiguous blocks, especially for writes, and to avoid wearing out particular regions,
writes should be spread over the entire storage extent. Thus, copy-on-write file
systems become especially attractive.

When can the inode and storage blocks of a file be reclaimed?
After the last directory entry, i.e., hard link, for the file has been deleted.
How is the file protection model different in FAT, FFS, and NTFS?

FAT has no protection. FFS recognizes R|W|X permissions or each is owner, group,
and other. NTFS has access control lists that can specify permissions on a per-user
basis.

What is a journaling file system?

One that uses transactions to provide ACID properties on internal operations, such
as updating the directory, index, and free list consistently.

What is the basic structure of a transaction?

e Operations are performed to prepare for a transactional update to a data
structure, which may require obtaining multiple locks, reading data objects,
and computing updates that will be made to the structures.

* Atransaction is opened, obtaining a transaction id.

* Asequence of idempotent updates are recorded into a non-volatile log.

* The transaction is committed by performing an atomic operation on the log.

* Locks are released and future operations treat the log as taking precedence
over the state of the structures that are modified by the transaction.

* In the background, the log is “redone” onto the permanent structure and
completed transactions are garbage collected.

e Ifacrash occurs, updates to the structure are replayed from committed
transactions in the log. Uncommitted transactions are discarded.

How does copy-on-write help support transactions for journaling?

Instead of updating in place, a new version of the file is created with a new index,
new indirection blocks, and new data blocks. Making the new version THE version,
essentially the rename, can be the atomic operation.

