
DEBUGGING TIPS

COMPUTER SCIENCE 61A

1 Introduction

Every time a function is called, Python creates what is called a stack frame for that specific
function to hold local variables and other information. Of course, functions will also make
other function calls, which requires the creation of even more frames. So how are these
frames organized?

Python uses what is called a stack to hold frames. Frames are stacked in the order that
they are created. Every time you make a function call, you place a frame on the stack.
You can only remove that frame when both of the following conditions are satisfied:

• All of the frames above it have been removed; in other words, the frame we want to
remove is on the top of the stack.

• The function that the frame belongs to has terminated.

If the most recent function call raises an error (also known as an exception), Python will
dump the stack – which you, the programmer, will see as a traceback message.

1.1 Traceback

The traceback message displays the state of the stack at the time the error was raised.
Essentially, the traceback will show you the chain of function calls that caused your error.
You can follow this chain to identify exactly which functions are the ones causing trouble.

For example, the following Python code will output a traceback message:

>>> def bug(f, x):
... return f(x)
>>> bug(3, 4)
Traceback (most recent call last):

File "<pyshell#29>", line 1, in <module>
bug(3, 4)

1

File "<pyshell#28>", line 2, in bug
return f(x)

TypeError: ’int’ object is not callable

Notice that the lines in the traceback appear to be paired together. The first line in such a
pair has the following format

File "<File name>", line <number>, in <function>

That line provides you with the following information:

• Function: The name of the function with which the frame is associated.

• Number: The line number in the file where the function is defined. This saves you
time trying to search through your code to find the buggy line.

• File Name: The name of the file where the function was written. This is especially
helpful when writing large programs.

The second line in the pair, which is indented further in than the first line, displays the
actual line of code that makes the next function call. This gives you a quick look at what
arguments were passed into the function and in what context the function was being
used, among other things.

Finally, notice that the traceback is organized with the “most recent call last”. That means
the line of code that is directly responsible for the error is at the bottom of the traceback
message.

1.2 Error Statements

The very last line in a traceback message is the error statement. An error statement has the
following format:

<Error type>: <Error message>

This line provides you with two pieces of information:

• Error Type: The type of error that was caused. These are usually descriptive enough
to help you narrow down your search for the cause of error.

• Error Message: A more detailed description of exactly what caused the error. Differ-
ent error types produce different error messages.

1.3 Doctests

One other (important) thing: don’t forget to run doctests! For almost every assignment
(homework, projects), we will provide you with doctests for certain functions – they are
there for your benefit. A quick run through the doctests will:

CS61A Summer 2012 Page 2

• Notify you of SyntaxErrors

• Check for basic functionality of your assignment, though passing doctests does not
guarantee your assignment is entirely correct.

To run a doctest, go to your terminal, cd to the directory in which your file is saved, and
type:

python3 -m doctest <assignment>

This will run all the doctests contained in the file. Please use the doctests: it catches a lot
of small, trivial errors (like improper indentation) that can nonetheless make it hard for
your readers grade your assignments!

2 Common Errors

The following are common errors that Python programmers run into.

2.1 SyntaxError

• Cause: Code syntax mistake

• Example:

File ‘‘<File name>’’, line <number>
def incorrect(f)

ˆ
SyntaxError: invalid syntax

• Solution: The “ ˆ” symbol points to the location in the code that contains invalid
syntax. The error message does not actually tell you what is wrong, but it does tell
you where.

• Notes: Python will check for SyntaxErrors before executing any code. This is
different from other errors, which are only raised during runtime.

2.2 IndentationError

• Cause: Improper indentation

• Example:

File ‘‘<file name>’’, line <number>
print(’improper indentation’)

ˆ
IndentationError: unindent does not match any outer indentation level

CS61A Summer 2012 Page 3

• Solution: The line that is improperly indented is displayed. Simply re-indent it.

• Notes: Python will check for IndentationErrors before executing any code.

2.3 TypeError

There are multiple possible causes:

• Invalid operand types for primitive operators. You are probably trying to add/sub-
tract/multiply/divide incompatible types.

Example:

TypeError: unsupported operand type(s) for +: ’function’ and ’int’

Solution: Change the operand that is incorrect. The order of the operand types
shown will narrow down which operand is of an incorrect type. In the above exam-
ple, the first operand to the + operator is incorrect.

• Using non-function objects in function calls.

Example:

>>> square = 3
>>> square(3)
Traceback (most recent call last):

...
TypeError: ’int’ object is not callable

Solution: This bug usually happens when you accidentally assign a variable to a
non-function object instead of a function. Double-check the code where you assign
that particular variable.

• Passing incorrect number of arguments to a function.

Example:

>>> add(3)
Traceback (most recent call last):

...
TypeError: add expected 2 arguments, got 1

Solution: Make sure you pass in the correct number of arguments to the specified
function; the error message tells you how many arguments there should be, and how
many you tried to pass.

CS61A Summer 2012 Page 4

2.4 NameError

• Cause: Variable has not been assigned to anything, or it does not exist. This includes
function names.

• Example:

File <’’file name’’>, line <number>, in <function>
y = x + 3

NameError: global name ’x’ is not defined

• Solution: Make sure you are initializing the variable (i.e. assigning the variable a
value / function object) before you use it.

• Notes: The reason the error message says “global name” is because Python will start
searching for the specified variable from a function’s local scope. If the variable is
not found in the local scope, Python will keep searching outward until it reaches the
global scope. If it still can’t find a variable by that name in the global scope, Python
will raise the error.

2.5 IndexError

• Cause: Trying to index a sequence (e.g. tuple, list, string) with a number that exceeds
the size of the sequence.

• Example:

File <’’file name’’>, line <number>, in <function>
s[100]

IndexError: tuple index out of range

• Solution: Make sure the number you index with is within the bounds of the se-
quence. If you are using a variable as an index (e.g. seq[x]), make sure that the
variable is assigned to a proper index.

3 Common Bugs

The following are not errors that Python will complain about, but rather mistakes that
programmers unintentionally make that Python will not be able to catch.

3.1 Spelling and Capitalization

Remember that Python is case sensitive. The variable hello is not the same as Hello or
heLlo or helo.

CS61A Summer 2012 Page 5

This will usually show up as a NameError, but sometimes, the misspelled variable may
actually have been defined. In that case, it can be difficult to find the error, and it is never
gratifying to discover that it’s just a spelling mistake.

3.2 Missing Parentheses

One of the most common bugs is to leave off a closing parenthesis (or a closing single
quote, or a closing double quote, or a closing bracket, or so on). If you see something like
this:

SyntaxError: EOL while scanning string literal

or anything with an EOLmessage, you most likely forgot a closing marker. Solution? Add
it back in.

3.3 = vs. ==

The single equal sign = is used for assignment; the double equal sign == is used for testing
equivalence. The most common error of this form is something like

if x = 3:

3.4 Order of Operations

Remember that arithmetic is evaluated just like it would be in math. The following are
listed from highest precedence to lowest:

• Parentheses: ()

• Exponents: **

• Multiplication: *, Division: / or //, and Modulo: %

• Addition: +, and Subtraction: -

Boolean operators also have an order of precedence. As before, the list is organized from
highest precedence to lowest:

• not: logical negation

• and: logical AND

• or: logical OR

This means that the following expression will return True.

False or not True and True or not False

which is equivalent to saying

CS61A Summer 2012 Page 6

False or ((not True) and True) or (not False)

3.5 Multiple Comparisons

Many beginners try to write “x and y are both greater than 0” as

x and y > 0

However, Python (and most other languages) require you to explicitly apply the compar-
ison to each variable:

x > 0 and y > 0

3.6 Infinite Loops and Runaway Recursion

Infinite loops are often caused by while loops; you might have forgotten to increment
or decrement the iterating variable. For example, the following will continually print 0,
never stopping.

i = 0
while i > 10:

print(i)

Poorly written recursion will cause a large traceback to occur, followed by

RuntimeError: Maximum recursion depth exceeded

If that occurs, you mostly likely forgot to write a base case, or your base case may need to
be fixed.

3.7 Acknowledgments

This debugging guide was first written for CS61A, Summer 2012 by Albert Wu.

CS61A Summer 2012 Page 7

	Introduction
	Traceback
	Error Statements
	Doctests

	Common Errors
	SyntaxError
	IndentationError
	TypeError
	NameError
	IndexError

	Common Bugs
	Spelling and Capitalization
	Missing Parentheses
	= vs. ==
	Order of Operations
	Multiple Comparisons
	Infinite Loops and Runaway Recursion
	Acknowledgments

