Jeff Nash

Insertion:
Algorithm

Selection:
Algorithm

for i = 2:n,
for (k = i; Xk > 1 and a[k)] < a[k-1]); k-=)
swap alk,k-1]
-+ invariant: a[l..i] is sorted
end

Properties

= Stable

= O(1) extra space

= O(n?) comparisons and swaps

= Adaptive: O(n) time when nearly sorted
= Very low overhead

Discussion

Although it is one of the elementary sorting algorithms with O(n?)
worst-case time, insertion sort is the algorithm of choice either
when the data is nearly sorted (because it is adaptive) or when the
problem size is small (because it has low overhead).

For these reasons, and because it is also stable, insertion sort is
often used as the recursive base case (when the problem size is
small) for higher overhead divide-and-conquer sorting algorithms,
such as merge sort or quick sort.

for i = 1:n,
k=1
for j = i+l:n, if a[j] < a[k], k = jJ
» invariant: a[k] smallest of a[i..n]
swap a[i,k]
-+ invariant: a[l..i] in final position
end

Properties

= Not stable

= O(1) extra space
= O(n? comparisons
= ©O(n) swaps

= Not adaptive

Discussion

From the comparions presented here, one might conclude that
selection sort should never be used. It does not adapt to the data in
any way (notice that the four animations above run in lock step), so
its runtime is always quadratic.

However, selection sort has the property of minimizing the number
of swaps. In applications where the cost of swapping items is high,
selection sort very well may be the algorithm of choice.

Bubble:
Algorithm

for i = 1:n,
swapped = false
for j = n:i+l,
if a[j) < a[j-1],
swap a[j,3-1]
swapped = true
-+ invariant: afl..i] in final position
break if not swapped
end

Properties

= Stable

= O(1) extra space

= O(n?%) comparisons and swaps

= Adaptive: O(n) when nearly sorted

Discussion

Bubble sort has many of the same properties as insertion sort, but
has slightly higher overhead. In the case of nearly sorted data,
bubble sort takes O(n) time, but requires at least 2 passes through
the data (whereas insertion sort requires something more like 1
pass).

Shell
Algorithm

h=1
while h < n, h = 3%h + 1
while h > 0,
h=h/3
for k = 1:h, insertion sort a(k:h:n])
-+ invariant: each h-sub-array is sorted
end

Properties

= Not stable

= O(1) extra space

= O(n*?) time as shown (see below)

= Adaptive: O(n-lg(n)) time when nearly sorted

Discussion

The worse-case time complexity of shell sort depends on the
increment sequence. For the increments 7 4 13 40 121..., which is
what is used here, the time complexity is O(n*?). For other
increments, time complexity is known to be O(n*?) and even
O(n-lg*(n)). Neither tight upper bounds on time complexity nor the
best increment sequence are known.

Because shell sort is based on insertion sort, shell sort inherits
insertion sort's adaptive properties. The adapation is not as dramatic
because shell sort requires one pass through the data for each
increment, but it is significant. For the increment sequence shown
above, there are log,(n) increments, so the time complexity for

+ nearly sorted data is O(n-log,(n)).

Merge:
Algorithm

# split in half

m=n/

# recursive sorts
sort a[l..m]
sort a[mtl..n]

# merge sorted sub-arrays using temp array
b = copy of a[l..m]
= =1, “m+l, k =1
while i'<= m and j <= n,
afk++] = (a[3) < b[i]) 2 a[j++] & bli++)
+ invariant: a(1..k] in final position
while L <= m,
a(k++) = b[it+]
+ invariant: a[1..k] in final position

Properties

Stable

©(n) extra space for arrays (as shown)
©(lg(n)) extra space for linked lists
BO(n'lg(n)) time

Not adaptive

Does not require random access to data

Discussion

Merge sort is very predictable. It makes between 0.5*1g(n) and
Ig(n) comparisons per element, and between lg(n) and 1.5*1g(n)
swaps per element. The minima are achieved for already sorted
data; the maxima are achieved, on average, for random data. If
using ©(n) extra space is of no concern, then merge sort is an
excellent choice: It is simple to implement, and it is the only stable
O(nlg(n)) sorting algorithm. Note that when sorting linked lists,
merge sort requires only ©(lg(n)) extra space (for recursion).

Merge sort is the algorithm of choice for a variety of situations:
when stability is required, when sorting linked lists, and when
random access is much more expensive than sequential access (for
example, external sorting on tape).

Heap:

# heapify
for i = n/2:1, sink(a,i,n)
+ invariant: a[l,n] in heap order

# sortdown
for i = 1:n,

swap a[l,n-i+1)

sirk(a,1,n-1)

+ invariant: a[n-i+1,n] in final position
end

# sink from i in afl..n]
function sink(a,i,n):
# {lc,rc,mc} = {left,right,max} child index
lc = 2*3i
if lc > n, return # no children
re =1lc + 1
me = (re > n) ? le : (a[le] > a[re]) ? le : re
if a[i] >= a[mc], return # heap ordered
swap a[i,mc)
sink(a,mc,n)

Properties

= Not stable

= O(1) extra space (see discussion)
= O(nlg(n)) time

= Not really adaptive

Discussion

Heap sort is simple to implement, performs an O(n-1g(n)) in-place
sort, but is not stable.

The first loop, the ©(n) "heapify" phase, puts the array into heap
order. The second loop, the O(n-lg(n)) "sortdown" phase, repeatedly
extracts the maximum and restores heap order.
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Nearly Sorted:

Sorting nearly sorted data is quite common in practice. Some

Reversed:
Discussion

Few Unique:
Discussion

observations:

= Insertion sort is the clear winner on this initial condition.
= Bubble sort is fast, but insertion sort has lower overhead.
= Shell sort is fast because it is based on insertion sort.

= Merge sort, heap sort, and quick sort do not adapt to nearly
sorted data.

Insertion sort provides a O(n?) worst case algorithm that adapts to
O(n) time when the data is nearly sorted. One would like an
O(n-1g(n)) algorithm that adapts to this situation; smoothsort is such
an algorithm, but is complex. Shell sort is the only sub-quadratic
algorithm shown here that is also adaptive in this case.

Sorting an array that is initially in reverse sorted order is an
interesting case because it is common in practice and it brings out
worse-case behavior for insertion sort, bubble sort, and shell sort.

Sorting an array that consists of a small number of unique keys is
common in practice. One would like an algorithm that adapts to
O(n) time when the number of unique keys is O(1). In this example,
there are 4 unique keys.

The traditional 2-way partitioning quicksort exhibits its worse-case
O(n?) behavior here. For this reason, any quicksort implementation
should use 3-way partitioning, where the array is partitioned into
values less than, equal, and greater than the pivot. Because the pivot
values need not be sorted recursively, 3-way quick sort adapts to
O(n) time in this case.

Shell sort also adapts to few unique keys, though I do not know its
time complexity in this case.

Comparison sorts
Name ¢  Best ¢ Average ¢ Worst 4 Memory 4 Stable ¢ | Method ¢ Other notes s
log T on average, | typical in-place Quicksort is usually done in place with O(log n) stack space. Most implementations
. 2 worst case is 12; sort is not ... . are unstable, as stable in-place partitioning is more complex. Naive variants use an
Quicksort nlogn nlogn n Sedgewick variation | stable; stable Partitioning O(n) space array to store the partition. Quicksort variant using three-way (fat)
is log n worst case | versions exist partitioning takes O(n) comparisons when sorting an array of equal keys.
. . . . ol . 2]
Merge sort nlogn nlogn nlogn 7 Worst case Yes Merging Highly parjallchzablc (}xp to O(log n) using the Three Hgnganan s Algorithm'“ or,
more practically, Cole's parallel merge sort) for processing large amounts of data.
In-place merge sort - — nlog’n 1 Yes Merging | Can be implemented as a stable sort based on stable in-place merging.*!
Heapsort nlogn nlogn nlogn 1 No Selection
Insertion sort n n? n? 1 Yes Insertion  O(n + d), where d is the number of inversions.
Partitioning . . .
Introsort nlogn nlogn nlogn logn . sed in several STL implementations.
& &) g &) W & Selection u P
Selection sort n? n? n? 1 No Selection | Stable with O(n) extra space, for example using lists.*]
Timsort n nlogn nlogn n Yes I'ﬁ:;;ﬁg& Makes n comparisons when the data is already sorted or reverse sorted.
Cubesort n nlogn nlogn n Yes Insertion ' Makes n comparisons when the data is already sorted or reverse sorted.
1 2 Depends on gap
Shell sor o nlog n sequence; 1 No Insertion Small code size, no use of call stack, reasonably fast, useful where memory is at a
(;1'/2 best kno;vn 1 premium such as embedded and older mainframe applications.
n nlog“n
Bubble sort n n? n? 1 Yes Exchanging | Tiny code size.
Binary tree sort n nlogn nlogn (balanced) n Yes Insertion | When using a self-balancing binary search tree.
Non-comparison sorts
Name 4 Best ¢ Average ¢ Worst ¢ Memory ¢ Stable ¢ p<<2k ¢ Notes ¢
Pigeonhole sort - n+ 2" n-+ 2’c 2’“ Yes Yes
Bucket sort (uniform keys) — n+k n® k n-k Yes No  Assumes uniform distribution of elements from the domain in the array.[%)
Bucket sort (integer keys) | — n-tr n-tr n+r Yes Yes |If ris O(n), then Average is O(n).[!0]
Counting sort - n+r n+r n+r Yes Yes |If ris O(n), then Average is O(n).[°!
LSD Radix Sort — n- Le n- L& n42¢ Yes No  |[91010]
d d
MSD Radix Sort - n- % n- f_; n+ 2" Yes No Stable version uses an external array of size n to hold all of the bins.
" ’ k k k . d
MSD Radix Sort (in-place) — n- E n- E 9d No No — recursion levels, 2¢ for count array.
k k ko . . X . .
Spreadsort - n- 7 n- ; +d R 2 No No | Asymptotics are based on the assumption that n << 2%, but the algorithm does not require this.



