
Performance:
• Latency (or response time or execution

time): time to complete one task
• Bandwidth (or throughput): tasks

completed per unit time
• Time = seconds / program =

(instructions / program) * (clock cycles /
instruction) * (seconds / clock cycle)

• Workload: Set of programs run on a
computer; specifies both programs and
relative frequencies

• Benchmark: Program selected for use in
comparing computer performance

• Benchmarks form a workload
• Usually standardized so that many

use them
• Amdahl’s Law: Speedup = time without

enhancement / time with enhancement =
1/((1 - F) + (F / SE))

Floating Point:
• Sign: determines the sign of the number

(0 for positive, 1 for negative)
• Exponent: in biased notation, bias of 127

(smallest is 0)
• Significand: fraction part of number;

0 < significand < 1 (for normalized #s)
• Note: 0 has no leading 1, so reserve

exponent value 0 just for number 0

!

!
• Largest finite positive value that can be

stored using a single precision float:
0x7F7FFFFF = (2 – 2-23) x 2127

• Smallest positive value that can be
stored using a single precision float:
0x00000001 = 2-23 x 2-126

• Smallest positive normalized value that
can be stored w/ a single precision float:
0x00800000 = 2-126

• Largest single precision real can
represent: 1.11…11 x 2+127

• With denorms, can represent #s as small
as 2.0ten x 10-38 to as large as 2.0ten x 1038

• Scientific notation in decimal:

!
• Normalized: no leadings 0s (exactly

one digit to left of decimal point)
• Ex: normalized: 1.0 x 10-9, not

normalized: 0.1 x 10-8,10.0 x 10-10

• Scientific notation in binary:
• Computer arithmetic that supports it

is called floating point, because it
represents numbers where the binary
point is not fixed, as it is for integers

• Declare such variable in C as float
(double for double precision)

• “Binary Point” signifies boundary
between integer and fractional parts:

• Example 6-bit representation:
• 10.1010two = 1x21 + 1x2-1 + 1x2-3 =

2.625ten
• Fixed binary point range of 6-bit

representations: 0 to 3.9375 (~4)

!
• Underflow/overflow when exponent

is too large or two small (negative)
to fit in 8 bits

• Dividing by 0 produces ± ∞, not
overflow except 0/0

• NaN examples: sqrt(-4.0)or 0/0
• Double precision floating point:

• 1 bit for sign (s)
• 11 bits for exponent (E)
• 52 bits for fraction (F)
• Bias of 1023
• 1 extra bit of precision if

leading 1 is implicit
• (-1)s * (1 + F) * 2E
• Range 2.0 x 10-308 to 2.0 x 10308

!

!
Physical Memory:
• Visible to kernel (& firmware)
• Main/internal memory

• Fast, but expensive

• Loses data on power loss
• Directly accessible by CPU
• Ex: registers, cache, DRAM

• Auxiliary/external memory
• Cheap, but slow
• Retains data on power loss
• Not directly accessible by CPU
• Ex: hard drive, SSD, flash drive

Virtual Memory:
• Primary memory visible to your

programs
• Hides physical memory from

general programs
• Hardware-accelerated (most

systems)
• Cannot be disabled (most modern

systems)
• Nothing to do with hard drive or

SSD
• Note: “swap”/“page” file (C:

\pagefile.sys)
• Secondary mem. used when

primary mem. full
• Can be disabled
• Doesn’t need VM per se (can be

emulated), but only practical (fast)
with hardware-accelerated VM

• HW accelerator: “memory-
management unit” (MMU)

Virtual Memory Implementation:
• Goal: separate programs’ memory

spaces
• Efficiency vs. flexibility tradeoff

• Doesn’t have to be linearly mapped
• Hardware-accelerated or software

emulated?
• Two common (but orthogonal)

approaches:
• Segmentation: split mem. into

segment base + offset (less popular
nowadays)

• Paging: split mem. into
conveniently-sized blocks (focus in
61C)

Virtual Memory Paging:
• Divide mem space into pages (4KiB)
• Treat entire page as a single unit of mem

(attributes uniform within each page)

• Goal: find an efficient & practical way
to represent attributes and permissions

• CPU uses these page tables in memory
for address translation

• Page table base register = address in
physical memory?

• Translation Lookaside Buffer (TLB)
• Reading page tables from DRAM slow
• Dedicate cache for page table entries
• Usually fully-associative; usually small
• Problem: wasteful. Why?

• 4GiB RAM / 4KiB pages ≈ 1M
pages

• Even 4 bytes of information / page
uses 4MiB of memory / process

• 256 processes use 1GiB of RAM
just for page tables!

• Better idea? Hierarchy (add indirection)
• Sub-divide each “large page” into

“smaller pages” when necessary
• Separate page tables for each level
• Massive space improvement
• Small time penalty

• Equations:
• VPN bits = log(VA size / page size)
• PPN bits = log(PA size / page size)
• Page offset = log(page size)
• Bits per row of PT: PPN bits + valid

+ dirty + R + W
• Size of page table = # of pages =

size of VA space / size of a page
• Page table base register = address in

physical memory?
• Size of a page table:

• (Size of VM / size of a page) *
size of page table entry

• TLB Reach = TLB size * page size

Disks:

• Disk Access Time = Seek Time +
Rotation Time + Transfer Time +
Controller Overhead

• Seek Time = time to move head to
correct track/cylinder; average time
((total # of tracks)/3) * time to move
across one track

• Rotation time = time for the disk to
rotate to the correct sector to read from/
write to; average rotations to get to
correct location is ½

• Transfer Time = time taken by the
sectors of the block and any gaps
between them to rotate past the head;
time to get data on/off the disk

• Modern disks have on-disk caches,
hidden from the outside world

• Generally, what limits real performance
is the on-disk cache access time

Networks:
• Shared vs. switch-based networks

• What makes them work:
• Links connecting switches and/or

routers to each other/devices
• Ability to route packets from source

to destination
• Layering, redundancy, protocols,

and encapsulation as means of
abstraction

• SW Send steps
1. App. copies data to OS buffer
2. OS calculates checksum, starts

timer
3. OS sends data to network interface

HW and says start
• SW Receive steps

3. OS copies data from network
interface HW to OS buffer

2. OS calculates checksum, if OK,
send ACK; if not, delete message
(sender resends when timer expires)

1. If OK, OS copies data to user
address space & signals application
to continue

• Hierarchy network layers:
• Application (chat client, game, etc.)
• Transport (TCP, UDP)
• Network (IP)
• Data Link Layer (ethernet)
• Physical Link (copper, wireless, ...)

