
Inspired by Tsion, written by Vania.

Induction and Strong Induction

Induction - show that given some clain for n, it also leads to n+1.
For strong induction, assume all numbers 0 < k < n are true, and
prove n using this assumption. Useful if the n formula can be
decomposed into smaller terms, since they are already true.

Example:

Prove
n∑

i=1
i =

n(n+1)
2

.

(1) Base case: Check for n = 0, 1 and (2) Assume true for n, show
this leads to n + 1

We know:
n+1∑
i=1

i =
n∑

i=1
i + (n + 1)

Which means
n+1∑
i=1

i =
n(n+1)

2
+ (n + 1)→ n(n+1)

2
+ 2n+2

2

= n2+3n+2
2

→ (n+1)(n+2)
2

, so n→ n + 1

Stable Marriage

(1) Each man goes to the first woman on his list not yet crossed off
and proposes to her. (2) She says maybe to her favorite and NEVER
to everyone else. (3) All the men who got ”NEVER” cross off that
woman and move down their list. (4) Keep going till everyone is
matched. Note: A ”rogue couple” is when two people in different
relationships prefer each other to their current partners.

Note:
1. Male Optimal and Female pessimive, because men get choice. if

(1:A,B),(2:B,A), but (A:2,1),(B:1,2), each man gets top choice but
woman gets worst.

2. Women improve each day (or stay the same), while men get
worse partner (or stay the same).

3. If women have ties wierd stuff happens - both men want same
women and she likes both, so rogue couple for loser.

4. At most n(n− 1) + 1 proposals - each man of n men can suffer at
most (n− 1) rejections, so n(n− 1), +1 for the last day.

Euclid and GCD

Let x ≤ y and let q, r be natural numbers such x = yq + r and
r < y. Then gcd(x, y) = gcd(r, y).

This is because any common divisor of x and y is also a common
divisor of x and r and vice versa. To see this, if d divides divides both
x and y, there exist integers z and z′ such that zd = x and z′d = y.
Therefore r = x− yq = zd− z′dq = (z − z′q)d, and so d divides r.
The other direction follows in exactly the same way.

Example:
Find the GCD(23,9)
23 = 2 ∗ 9 + 5→ 9 = 1 ∗ 5 + 4→ 5 = 1 ∗ 4 + 1→ 4 = 4 ∗ 1 + 0
Now we chain back up: 1 = 5 ∗ 1− 1 ∗ 4, and since 4 = 1 ∗ 9− 1 ∗ 5

we get 1 = 5 ∗ 1− 1 ∗ (1 ∗ 9− 1 ∗ 5). etc:
1 = 2 ∗ 5− 1 ∗ 9→ 1 = 2 ∗ (1 ∗ 23− 2 ∗ 9)− 1 ∗ 9→ 1 = 2 ∗ 23− 5 ∗ 9.

Note: In this manner we have also found that 23−1 ≡ 2 mod 9.

Modulo Properties

If a = c mod m and b = d mod m, then a + b = c + d mod m and
ab = cd mod m.

We know that c = a + km and d = b + lm, so
c + d = a + km + b + lm = a + b + (k + l)m, which means that
a + b = c + d mod m.

Let m, x > 0 ∈ Z and gcd(m,x) = 1. Then ∃x−1 mod m, and it is
unique modm.

Simplify: 5782258 mod 22
We can reduce the exponent first. Since 22 = 11 ∗ 2, we know

x(11−1)(2−1) ≡ x10 ≡ 1 mod 22, so we have:
782258 mod 10. Likewise, 10 = 5 ∗ 2, so 258 mod 4 ≡ 2 in this case.

Thus, 782258 ≡ 7822 mod 10, so we simplify to get 22 mod 10 ≡ 4.

Thus, we have 5782258 ≡ 54 ≡ 252 ≡ 32 ≡ 9 mod 22

Modulo with Polynomials
We can use mod with polynomials. For example:
P (x) = x3 + 2x + 3, and Q(x) = x2 + 4x + 3. Find

P (x) ∗Q(x) mod 5
Solution:
P (x)Q(x) = x5 + 4x4 + 5x3 + 11x2 + 18x + 9 mod 5

= (x)(x4) + (4)(x4) + (0)(x3) + (1)(x2) + (3)x + 4 mod 5

= (x)(1) + 4(1) + x2 + 3x + 4 mod 5, since x5−1 ≡ 1 mod 5

= x2 + 4x + 8 mod 5
= x2 + 4x + 3 mod 5

Secret Sharing

A polynomial in a single variable is of the form
p(x) = adx

d + ad1x
d1 + · · · + a0.

A non-zero polynomial of degree d has at most d roots.
Given d + 1 pairs (x1, y1), . . . , (xd+1, yd+1), with all the xi

distinct, there is a unique polynomial p(x) of degree (at most) d such
that p(xi) = yifor1 ≤ i ≤ d + 1.

Explanation: Polynomial is evaluated at P (x)for1 < x < k, values
are given out to k individuals. They can then get at least d + 1 people
and extrapolate the original polynomial.

Example:
Given these three points find the polynomial: (1,0) (2, 1), (3,1)
∆x1 = ((x− 2)(x− 3))/((1− 2)(1− 3))
∆x2 = ((x− 1)(x− 3))/((2− 1)(2− 3))
∆x3 = ((x− 1)(x− 2))/((3− 1)(3− 2))
P (x) = y1∆x1 + y2∆x2 + y3∆x3

Well Ordering Principle

1. Find smallest n such that it is false for some claim.
2. Show n− 1→ n is true. Thus causing a contradiction.
3. Alternatively, show that n→ n− 1, which shows that n− 1 was

the smallest example, thus violating our initial assumption of n being
the smallest.

RSA and Bijections

A bijection is a function for which every b ∈ B has a unique
pre-image a ∈ A such that f(a) = b. Note that this consists of two
conditions:

1. f is onto: every b ∈ B has a pre-image a ∈ A.
2. f is one-to-one: for all a,a′ ∈ A, if f(a) = f(a′) then a = a′.
Encryption function E(x) ≡ xe mod N where N = pq, (p and q are

two large primes), E : {0, ..., N − 1} and e is relatively prime to
(p− 1)(q − 1).

The inverse of the RSA function is the decryption function:
D(x) = xd mod N where de ≡ 1 mod (p− 1)(q − 1).

Public key: (N, e)
Private key: d
D(E(x)) = x (therefore E(x) is a bijection)

(xe)d = x mod N for every x ∈ {0, 1, ..., N − 1}.

Fermat’s Little Theorem: For any prime p and any
a ∈ {1, 2, ..., p− 1}, we have ap−1 = 1 mod p.

Additionally, x(P−1)(Q−1) mod N ≡ 1, with N = PQ, and P,Q are
prime.

Proof: To prove the statement, we have to show that
(xe)d = x mod N for every x ∈ {0, 1, ..., N − 1}. (1)

Lets consider the exponent, which is ed. By definition of d, we know
that ed = 1 mod (p− 1)(q − 1); hence we can write
ed = 1 + k(p− 1)(q − 1) for some integer k, and therefore

xed − x = x1+k(p−1)(q−1) − x = x(xk(p−1)(q−1) − 1). (2)
Looking back at equation (1), our goal is to show that this last

expression in equation (2) is equal to 0 mod N for every x.

Now we claim that the expression x(xk(p−1)(q−1) − 1) in (2) is
divisible by p. To see this, we consider two cases:

Case 1: x is not a multiple of p. In this case, since x 6= 0 mod p, we
can use Fermats Little Theorem to deduce that xp−1 = 1 mod p.

Then x(p−1)k(q−1) = 1k(q−1) mod p and hence

xk(p−1)(q−1) − 1 = 0 mod p, as required.

Case 2: x is a multiple of p. In this case the expression in (2), which
has x as a factor, is clearly divisible by p.

By an entirely symmetrical argument, x(xk(p−1)(q−1) − 1) is also
divisible by q. Therefore, it is divisible by both p and q, and since p
and q are primes it must be divisible by their product, pq = N . But
this implies that the expression is equal to 0 mod N , which is exactly
what we wanted to prove.

The security of RSA hinges upon the following simple assumption:
Given N , e and y = xe mod N , there is no efficient algorithm

for determining x.

Polynomials
A polynomial in a single variable is of the form

p(x) = adx
d + ad1x

d1 + · · · + a0. Property 1: A non-zero polynomial of
degree d has at most d roots. Property 2: Given d + 1 pairs
(x1, y1), . . . , (xd+1, yd+1), with all the xi distinct, there is a unique
polynomial p(x) of degree (at most) d such that p(xi) = yifor1 ≤ i ≤ d + 1.

1. Relax
2. You will do GREAT!
3. The ”A” is yours!


