
Well Ordering Principle
1. Find smallest n such that it is false for some claim.
2. Show n− 1→ n is true. Thus causing a contradiction.
3. Alternatively, show that n→ n− 1, which shows that n− 1 was the
smallest example, thus violating our initial assumption of n being the
smallest.

Claim: If I draw n straight lines on a piece of paper I cannot divide

the piece of paper into more than
n(n+1)

2
+ 1 regions.

Proof: We will use the well-ordering principle to find a contradiction.
Consider a minimal set of lines L violating the conjecture. Since 0
lines divide the paper into 0(0+1)2 + 1 = 1 regions, L must be
non-empty. Fix some line l ∈ L. Removing l would cause some pairs
of regions. Two regions are merged if and only if one of the borders
they share is a segment of l. So removing l reduces the total number
of regions only by the total number of segments of l. The number of
segments of l is at most one more than the number of intersections of
l with other lines in L. Since l can intersect each of the other n− 1
lines at most once, l has at most n segments. Thus removing l merges
at most n pairs of regions, leaving more than
n(n+1)

2
+ 1− n =

n(n−1)
2

+ 1 regions. But then we are left with a set
of n− 1 lines which divide the sheet of paper into more than
(n−1)n

2
+ 1 regions, contradicting our assumption that L was a

minimal counterexample.

HW1, Problem 1
Claim: Suppose that x ∈ R such that x + 1

x
∈ Q.

Using strong induction, show that for each n ∈ N , an = xn + 1
xn
∈ Q.

Solution: We proceed by strong induction, using a0 ∈ Q and a1 ∈ Q as our
base case. (We are proving the stronger statement that n ≥ 0 implies
an ∈ Q.)
Base Case: a0 = 1 + 1 = 2 is clearly in Q, and a1 = x + 1

x
∈ Q by

hypothesis.
Induction Hypothesis: Suppose n ≥ 1 and that for each 0 ≤ k ≤ n, ak ∈ Q.
Induction Step: Note that a1an = (x + 1

x
)(xn + 1

xn
)

= xn+1 + xn−1 + 1
n−1

+ 1
n+1

= an+1 + an−1. Thus

an+1 = a1an − an − 1. By the inductive hypothesis, a1, an − 1, an are all
rational. Thus an + 1 is a sum of products of rational numbers, and hence
rational.

Polynomials, Lecture Note 5
A polynomial in a single variable is of the form
p(x) = adx

d + ad1x
d1 + · · · + a0.

Property 1: A non-zero polynomial of degree d has at most d roots.
Property 2: Given d + 1 pairs (x1, y1), . . . , (xd+1, yd+1), with all the xi
distinct, there is a unique polynomial p(x) of degree (at most) d such that
p(xi) = yifor1 ≤ i ≤ d + 1.

Bijections, Lecture Note 4
A bijection is a function for which every b ∈ B has a unique pre-image
a ∈ A such that f(a) = b. Note that this consists of two conditions:

1. f is onto: every b ∈ B has a pre-image a ∈ A.
2. f is one-to-one: for all a,a′ ∈ A, if f(a) = f(a′) then a = a′.

RSA, Lecture Notes 4
Encryption function E(x) ≡ xe mod N where N = pq, (p and q are two
large primes), E : {0, ..., N − 1} → {0, ..., N − 1} and e is relatively prime
to (p− 1)(q − 1). The inverse of the RSA function is the dycryption

function: D(x) = xd mod N where d is the inverse of e mod (p− 1)(q − 1).
Public key: (N, e)
Private key: d
D(E(x)) = x (therefore E(x) is a bijection)

HW2, Problem 3
Consider another scenario in which we do allow for ties. i.e. There may be
several partners that are equally preferred by a person. As an example
consider the scenario in which the women are indifferent amongst the men:

Men Women

1 A > B

2 B > A

Women Men

A 1 = 2

B 1 = 2

In this kind of scenario the definition of a stable pairing is no longer obvious.
Consider the following definitions for stability criteria: As in the original
problem, define a rogue couple to be a man and a woman who prefer each
other than their partners in the pairing. We say a pairing is stable if it has
no rogue couple. In the presence of ties, is there an algorithm that always
yields a stable pairing? If so, prove it. If not, provide a counter example.
Solution:
One good algorithm is to use the following convention: Everyone generates a
temporary ranking by breaking any ties using alphabetical/numerical order.
(For instance if my ranking was D > B = C > A my temporary ranking
would become D ≥ B ≥ C ≥ A). Use the traditional stable marriage
algorithm on the temporary rankings.
Claim: This will yield a stable pairing for the original set of rankings.
Proof (By Contradiction):
The key to the proof is that if you preferred person x to person y in the
temporary rankings, you will not prefer person y to person x according to
your original rankings. Assume that you can actually find a rogue couple
according to the original preferences after pairing everyone using the
temporary rankings. If that is true then consider the man in the the rogue
couple, and call him M . Call his current wife W and his preferred wife W∗.
Because M and W∗ form a rogue couple, he must prefer her over W and
therefore his ranking of W∗ must be greater than his ranking of W in the
temporary system. So he must have proposed to W∗ when we applied the
stable marriage algorithm under the temporary rankings. Since W∗ is not
with M she must have rejected him for her current partner M∗. So under
her temporary ranking M∗ ≥ M which means that either she ranks M and
M∗ equally, or she prefers M∗ to M ! This is of course a contradiction
because we assumed that M and W∗ prefer each other to their current
partners.

Modulo with Polynomials

We can use mod with polynomials. For example:
P (x) = x3 + 2x + 3, and Q(x) = x2 + 4x + 3. Find P (x) ∗Q(x) mod 5
Solution:
P (x)Q(x) = x5 + 4x4 + 5x3 + 11x2 + 18x + 9 mod 5

= (x)(x4) + (4)(x4) + (0)(x3) + (1)(x2) + (3)x + 4 mod 5

= (x)(1) + 4(1) + x2 + 3x + 4 mod 5, since x5−1 ≡ 1 mod 5

= x2 + 4x + 8 mod 5
= x2 + 4x + 3 mod 5

Simplify: 5782258 mod 22
We can reduce the exponent first. Since 22 = 11 ∗ 2, we know

x(11−1)(2−1) ≡ x10 ≡ 1 mod 22, so we have:
782258 mod 10. Likewise, 10 = 5 ∗ 2, so 258 mod 4 ≡ 2 in this case. Thus,
782258 ≡ 7822 mod 10, so we simplify to get 22 mod 10 ≡ 4. Thus, we have

5782258 ≡ 54 ≡ 252 ≡ 32 ≡ 9 mod 22

Modular Arithmetic & Properties
Theorem 3.1: If a = c mod m and b = d mod m, then a + b = c + d mod m
and ab = cd mod m.
Proof (for addition portion of Thm. 3.1): We know that c = a + km
and d = b + lm, so c + d = a + km + b + lm = a + b + (k + l)m, which means
that a + b = c + d mod m.
Theorem 3.2: Let m, x be positive integers such that gcd(m,x) = 1. Then
x has a multiplicative inverse modulo m, and it is unique (modulo m).
Euclid’s Algorithm
Theorem 3.3: Let x ≤ y and let q, r be natural numbers such x = yq + r
and r < y. Then gcd(x, y) = gcd(r, y).

Stable Marriage Algorithm, Lecture Notes 2
(1) Each man goes to the first woman on his list not yet crossed off and
proposes to her. (2) She says maybe to her favorite and NEVER to everyone
else. (3) All the men who got ”NEVER” cross off that woman and move
down their list. (4) Keep going till everyone is matched. Note: A ”rogue
couple” is when two people in different relationships prefer each other to
their current partners.

Analyis
To establish that it outputs a stable pairing, we need the following crucial
lemma:
Improvement Lemma: If M proposes to W on the kth day, then on every
subsequent day she has someone on a string whom she likes at least as much
as M .
Proof: Suppose towards a contradiction that the jth day for j > k is the
first counterexample where W has either nobody or some M∗ inferior to M
on a string. On day j − 1, she has M′ on a string and likes M′ at least
much as M . According to the algorithm, M′ still proposes to W on the jth
day since she said maybe the previous day. So W has the choice of at least
one man on the jth day; moreover, her best choice is at least as good as M′,
and according to the algorithm she will choose him over M∗. This
contradicts our initial assumption.

Lemma: The algorithm terminates with a pairing.
Proof: Suppose for contradiction that there is a man M who is left
unpaired at the end of the algorithm. He must have proposed to every
single woman on his list. By the Improvement Lemma, each of these women
thereafter has someone on a string. Thus when the algorithm terminates, n
women have n men on a string not including M . So there must be at least
n + 1 men. Contradiction.

Theorem: The pairing produced by the algorithm is always stable.
Proof: We will show that no man M can be involved in a rogue couple.
Consider any couple (M,W ) in the pairing and suppose that M prefers
some woman W∗ to M . We will argue that W∗ prefers her partner to M , so
that (M,W∗) cannot be a rogue couple. Since W∗ occurs before W in Ms
list, he must have proposed to her before he proposed to M . Therefore,
according to the algorithm, W∗ must have rejected him for somebody she
prefers. By the Improvement Lemma, W∗ likes her final partner at least as
much, and therefore prefers him to M . Thus no man M can be involved in a
rogue couple, and the pairing is stable.

Theorem: The pairing output by the Stable Marriage algorithm is male
optimal.
Theorem: If a pairing is male optimal, then it is also female pessimal.

Fermat’s Little Theorem: For any prime p and any a ∈ {1, 2, ..., p− 1},
we have ap−1 = 1 mod p.
Theorem 4.2: Under the above definitions of the encryption and
decryption functions E and D, we have D(E(x)) = x mod N for every
possible message x ∈ {0, 1, ..., N − 1}.
Proof: To prove the statement, we have to show that

(xe)d = x mod N for every x ∈ {0, 1, ..., N − 1}. (1)
ed = 1 mod (p− 1)(q − 1); hence we can write ed = 1 + k(p− 1)(q − 1) for
some integer k, and therefore

xed − x = x1+k(p−1)(q−1) − x = x(xk(p−1)(q−1) − 1). (2)
Looking back at equation (1), our goal is to show that this last expression in
equation (2) is equal to 0 mod N for every x.

Now we claim that the expression x(xk(p−1)(q−1) − 1) in (2) is divisible by
p. To see this, we consider two cases:
Case 1: x is not a multiple of p. In this case, since x 6= 0 mod p, we can use
Fermats Little Theorem to deduce that xp−1 = 1 mod p. Then

x(p−1)k(q−1) = 1k(q−1) mod p and hence xk(p−1)(q−1) − 1 = 0 mod p, as
required.
Case 2: x is a multiple of p. In this case the expression in (2), which has x
as a factor, is clearly divisible by p.

By an entirely symmetrical argument, x(xk(p−1)(q−1) − 1) is also divisible
by q. Therefore, it is divisible by both p and q, and since p and q are primes
it must be divisible by their product, pq = N . But this implies that the
expression is equal to 0 mod N , which is exactly what we wanted to prove.


