
Proposition - statement with boolean value; Propositional Forms - combining propositions
 P∧Q - conjunction (and); P∨Q - disjunction (or); ¬Q - negation (not)
 P⟹Q - implication (If P, then Q) (equivalent to ¬P ∨ Q)
Universe - where statement holds true ( N = natural numbers, Z = integer)
 ¬(∃x(P(x))) = ∀x(¬P(x)); ¬(∀x(P(x))) = ∃x(¬P(x)) //// 
(∃x∈N)(∀y ∈N)(x≠y) means there exists x in set. For all y that doesn’t equal y in set. (FALSE).
-Direct Proof of P⟹Q - Assume P ... chain of implications ... Therefore Q
-Contrapositive of P⟹Q - Assume ¬Q ... Therefore ¬P... So P⟹Q  ≣ ¬Q ⟹ ¬P
-Proof by Contradiction - Assume ¬P ...R ... ¬R (but R∧¬R is false, so ¬P is false) Therefore P
-Proof by Cases - prove all the cases must be true, sometimes nonconstructively
a|b - a divides b, b mod a = 0        Inference Rules
modus ponens -  P∧(P⟹Q) ⟹ Q (sufficient); modus tollens -  ¬Q ∧ (P⟹Q) ⟹ ¬P (necessary)
disjunctive elimination - (P⟹Q) ∧ (R⟹Q) ∧ (P ∨ R) ⟹ Q; and-elimination - P∧Q ⟹ P (or Q)
Induction //(example) - P(k): 0 +1 + ... + k = k(k+1)(1/2) ////Theorem: Prove (∀x ∈ N) (P(k))
 Claim: State. Base case: k = 0; Assume induction hypothesis: 0 + ... + k = k(k+1)(1/2)
 Induction step: (0 + ... + k) + (k+1) = (k(k+1)(1/2)) + (k+1) = (k+1)(k+2)(1/2)) (true)
 Hence, by the principle of induction, <claim>. 
simple induction [ P(k) ⟹ P(k+1) ] vs strong induction [ P(0)∧P(1)∧...∧P(k) ⟹ P(k+1) ]
Well Ordering Principle:  If S ⊆ N and S ≠  ∅ then S has a minimal element
  (for contradiction proofs) - let m be the smallest n for which P(n) is false..P(m-1)=true
Stable Marriage. Propose and Reject - always finds stable pairing (n men + n women):
Each Man proposes to first woman on list; Each Woman: says ‘maybe’ to best, ‘never’ to rest of proposals;
 rejected suitors cross woman off list. repeat loop until no rejected suitors
IMPROVEMENT lemma: If W has M on a string on the kth day, then she will either get him or someone 
better on a string on each subsequent day. (proof by induction/contradiction)
Sets - Universe U.  B, A ⊂ U; A ≣ { x ∈ U | P(x) }; AC ≣ { x ∈ U | ¬P(x) }
A ∪ B = {x ∈ U | x ∈ A ∨ x ∈ B} = {x ∈ U | P(x) ∨ Q(x)}
A ∩ B = {x ∈ U | x ∈ A ∧ x ∈ B} = {x ∈ U | P(x) ∧ Q(x)}
Running Time - F(n) = O(g(n)) as n goes to infinity; F(n) is RUNNING TIME eqn (n, n2, etc)
F(n) exists iff  F(n) ≤ Kg(n) ∀n≥n0 (K is worst case scenario). Show F(n) ≤ Kg(n) via induction. 
“Therefore, F(n) (your running time equation) = O(g(n)).”
Euclid algorithm gcd(x,y)  ------- if y = 0 then return(x). else return(gcd(y, x mod y))
RSA!!mod arithmetic, p and q are primes; N = pq; message = x mod N; y = E(x) mod N
Let e be any number that is relatively prime to (p-1)(q-1); e typically is small ~3
Bob’s public key = (N, e). //p, q is private. Private key = inverse of [e mod (p-1)(q-1).]
Encryption: E(x) = xe mod N. ; Decryption: D(y) = yd mod N. D(E(x)) = x mod N.
Both E(x) and D(y) are bijections. x = xed mod N
Injection:  One-to-one. f maps distinct inputs to distinct outputs. x ≠ y ⟹ f(x) ≠ f(y).
If there is a function g: B → A, and (∀x ∈ A)(g(f(x)) = x); then f must be one-to-one.
Surjection: Onto. Each element in the range has at least one pre-image. ∀y ∃x : f(x) = y.
Bijections: every element a ∈ A has unique image b = f(a) ∈ B.
  every element b ∈ B has unique pre-image a ∈ A: f(a) = B.
If f: A → A is one-to-one and A is a finite set, then f is a bijection.
Fermat’s Little Theorem: For any prime p and any a ∈ {1,2,...,p-1}, ap-1 ≣ 1 mod p. factorial!
Pigeonhole Principle: n elements --> n-1 holes, there must be at least two elements in a hole


