Proposition - statement with boolean value; Propositional Forms - combining propositions

 $P \land Q$ - conjunction (and); $P \lor Q$ - disjunction (or); $\neg Q$ - negation (not)

 $P \Longrightarrow Q$ - implication (If P, then Q) (equivalent to $\neg P \lor Q$)

Universe - where statement holds true (\mathbb{N} = natural numbers, \mathbb{Z} = integer)

 $\neg(\exists x(P(x))) = \forall x(\neg P(x)); \neg(\forall x(P(x))) = \exists x(\neg P(x)) ////$

 $(\exists x \in N)(\forall y \in N)(x \neq y)$ means there exists x in set. For all y that doesn't equal y in set. (FALSE). -Direct Proof of P \Longrightarrow Q - Assume P ... chain of implications ... Therefore Q

-Contrapositive of $P \Longrightarrow Q$ - Assume $\neg Q$... Therefore $\neg P$... So $P \Longrightarrow Q \equiv \neg Q \Longrightarrow \neg P$

-**Proof by Contradiction** - Assume $\neg P \dots R \dots \neg R$ (but $R \land \neg R$ is false, so $\neg P$ is false) Therefore P -**Proof by Cases** - prove all the cases must be true, sometimes nonconstructively

a|b - a divides b, b mod a = 0

Inference Rules

modus ponens - $P \land (P \Longrightarrow Q) \Longrightarrow Q$ (sufficient); *modus tollens* - $\neg Q \land (P \Longrightarrow Q) \Longrightarrow \neg P$ (necessary)

disjunctive elimination - (P \Longrightarrow Q) \land (R \Longrightarrow Q) \land (P \lor R) \Longrightarrow Q; and elimination - P \land Q \Longrightarrow P (or Q)

Induction //(example) - P(k): 0 + 1 + ... + k = k(k+1)(1/2) ////Theorem: Prove ($\forall x \in \mathbb{N}$) (P(k))

Claim: State. Base case: k = 0; Assume induction hypothesis: 0 + ... + k = k(k+1)(1/2)Induction step: (0 + ... + k) + (k+1) = (k(k+1)(1/2)) + (k+1) = (k+1)(k+2)(1/2)) (true) Hence, by the principle of induction, <*claim*>.

simple induction [$P(k) \Longrightarrow P(k+1)$] vs strong induction [$P(0) \land P(1) \land ... \land P(k) \Longrightarrow P(k+1)$]

Well Ordering Principle: If $S \subseteq \mathbb{N}$ and $S \neq \emptyset$ then S has a minimal element

(for contradiction proofs) - let **m** be the smallest n for which P(n) is false..P(m-1)=true **Stable Marriage. Propose and Reject** - always finds stable pairing (n men + n women): Each Man proposes to first woman on list; Each Woman: says 'maybe' to best, 'never' to rest of proposals;

rejected suitors cross woman off list. repeat loop until no rejected suitors

IMPROVEMENT *lemma*: If W has M on a string on the kth day, then she will either get him or someone better on a string on each subsequent day. (proof by induction/contradiction)

Sets - Universe U. B, $A \subset U$; $A \equiv \{x \in U \mid P(x)\}$; $A^C \equiv \{x \in U \mid \neg P(x)\}$

$$A \cup B = \{x \in U \mid x \in A \lor x \in B\} = \{x \in U \mid P(x) \lor Q(x)\}$$

$$A \cap B = \{x \in U \mid x \in A \land x \in B\} = \{x \in U \mid P(x) \land Q(x)\}$$

Running Time - F(n) = O(g(n)) as n goes to infinity; F(n) is RUNNING TIME eqn (n, n^2, etc) F(n) exists iff $F(n) \le Kg(n) \forall n \ge n_0$ (K is worst case scenario). Show $F(n) \le Kg(n)$ via induction. "Therefore, F(n) (your running time equation) = O(g(n))."

Euclid algorithm gcd(x,y) ------ if y = 0 then return(x). else return(gcd(y, x mod y)) **RSA!!**mod arithmetic, p and q are primes; N = pq; message = x mod N; $y = E(x) \mod N$

Let e be any number that is relatively prime to (p-1)(q-1); e typically is small ~ 3

Bob's public key = (N, e). //p, q is private. Private key = inverse of $[e \mod (p-1)(q-1)]$.

Encryption: $E(x) = x^e \mod N$.; **Decryption:** $D(y) = y^d \mod N$. $D(E(x)) = x \mod N$. Both E(x) and D(y) are bijections. $x = x^{ed} \mod N$

Injection: One-to-one. f maps distinct inputs to distinct outputs. $x \neq y \implies f(x) \neq f(y)$.

If there is a function g: $B \rightarrow A$, and $(\forall x \in A)(g(f(x)) = x)$; then f must be one-to-one.

Surjection: Onto. Each element in the range has at least one pre-image. $\forall y \exists x : f(x) = y$.

Bijections: every element $a \in A$ has unique **image** $b = f(a) \in B$.

every element $b \in B$ has unique **pre-image** $a \in A$: f(a) = B.

If f: $A \rightarrow A$ *is one-to-one and* A *is a finite set, then f is a bijection.*

Fermat's Little Theorem: For any prime p and any $a \in \{1, 2, ..., p-1\}$, $a^{p-1} \equiv 1 \mod p$. factorial! **Pigeonhole Principle:** n elements --> n-1 holes, there must be at least two elements in a hole