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CS 61B Data Structures 

Singly-Linked Lists | Useful if number of items in list is not fixed.  Lecture 6. 

Invariants 

 SList’s size field is always correct (representing number of SListNodes in the list) 

 List is never circularly linked: 

   
 No next pointer points to head (head is 1st element or is null) 

 Either tail == null or tail.next == null 

Performance 

 Insert and remove operations take constant time 

 Find operations take linear time 

Advantages (over Array-Based Lists) 

 Inserting item into middle of linked lists take constant time if you have reference to previous node 

 Lists can keep growing until memory runs out (you’d have to reallocate new arrays otherwise) 

Disadvantages 

 Finding nth item of linked list takes linear time 

Doubly-Linked Lists | Implementation of linked lists which allow for easy insertion at end of list.  Lecture 7. 

 
Note:  head and tail are part of DList. 

Invariants 

 size field always represents number of DListNodes in list (excludes the head and tail) 

 List is never circularly-linked 

 Either head == null or head.prev == null; either tail == null or tail.next == null 

Performance 

 Insert and remove operations take constant time 

 Find operations take linear time  (although you can start from either end) 
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Advantages 

 Inserting item into middle of linked lists take constant time if you have reference to previous node 

 Lists can keep growing until memory runs out (you’d have to reallocate new arrays otherwise) 

 Can walk through list from either end of list  (due to head and tail references) 

Disadvantages 

 Requires special cases for DList with no items and DList with one item 

 Finding nth item takes linear time (though you can start from either end) 

Circularly-Linked Lists | Implementation of Doubly-Linked Lists which require fewer special cases.  Lecture 7. 

   Note:  head is part of DList. 

Invariants 

 For every DList d, d.head != null. 
 For every DListNode x, x.next != null. 
 For every DListNode x, x.prev != null. 
 For every DListNode x, if x.next ==y then  y.prev != x. 
 For every DListNode x, if x.prev == z, then z.next == x 
 A DList's size variable is number of DListNodes, not counting sentinel 
 Empty DList: sentinel's prev and next fields point to itself 

Performance 

 Insert and remove operations take constant time 

 Find operations take linear time   

Advantages   

 Does not require special cases for DList with no items and DList with one item (due to sentinel node) 

 Inserting item into middle of linked lists take constant time  

 Lists can keep growing until memory runs out (you’d have to reallocate new arrays otherwise) 

 Can walk through list from either end of list  (due to sentinel node) 

Disadvantages 

 Requires special cases for DList with no items and DList with one item 

 Finding nth item takes linear time (though you can start from either end) 
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Dictionaries / Hash Tables | Maps arbitrary key to a single value.  Key must exist in dictionary.  Lectures 22-23. 

 

Properties 

 If keys are prioritized or ordered, consider a priority queue/binary heap if you only want to retrieve 
minimum key.  Use binary search tree if you want to retrieve any ordered key.  Hash tables canNOT deal 
with inexact matches! 

 Implemented as an array of linked lists.  The array represents the buckets and the linked lists take care of 
collisions from the compression function. 

 Good compression function:  h(hashCode) = ((a * hashCode + b) mod p) mod N 
o a, b are positive integers.  This has the effect of converting n into a base a number. 

Example:         (      )     )     ) 

o p is large, positive prime number.  a and p should have no common factors. 
o N does not need to prime.  p takes care of randomizing the hashcode. 

Key Methods 

(i) public Entry insert(key, value) 
 Compute key's hash code 
 Compress it to determine which bucket to look inside 
 Insert entry into bucket's linked list 

(ii) public Entry find(key) 
 Hash the key (in same way as insert()) then compress 
 Search list for entry with matching key 
 If found, return entry; otherwise return null 

(iii) public Entry remove(key) 
 Hash key, search list 
 Remove entry from list if found 
 Return entry or null 

Performance 

 Ideally, if Load Factor  
 

 
  , runtime is    ).  (n is number of keys and N is number of buckets, where    ) 

 If Load Factor becomes too large, runtime is    ).  (Dominated by linked list performance) 

Stacks | Last-In, First-Out (LIFO).  Crippled list which only manipulates element at top of stack.  Lecture 23. 
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Key Methods –  Stacks can be implemented as a singly-linked list with the following behaviors:  

(i) public int size(); 

 Return size field of Singly-Linked List 
(ii) public boolean isEmpty(); 

 Check if size field of singly-linked list is 0.  If so, return true, otherwise return false. 
(iii) public void push(Object item); 

 Implement an insertFront() method, as done with singly-linked lists. 
(iv) public Object pop(); 

 Implement a removeFront() method, as done with singly-linked lists. 
(v) public Object top(); 

 Implement front() as in a singly-linked list, which returns the head of the list. 

Performance 

 All of the above methods run in    ) time. 

Queues | First-In, First-Out (FIFO).  Crippled list: read/remove from front and add to end of queue.  Lecture 23. 
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Key Methods –  Stacks can be implemented as a singly-linked list with the following behaviors:  

(i) public int size(); 

 Return size field of Singly-Linked List 
(ii) public boolean isEmpty(); 

 Check if size field of singly-linked list is 0.  If so, return true, otherwise return false. 
(iii) public void enqueue(Object item); 

 Implement an insertFront() method, as done with singly-linked lists. 
(iv) public Object pop(); 

 Implement a removeEnd() method, as done with singly-linked lists.  This is fast if we include a 
tail pointer. 

(v) public Object top(); 
 Implement front() as in a singly-linked list, which returns the head of the list. 

Performance 

 All of the above methods run in    ) time, assuming that a tail pointer is maintained. 

Deques | A Double-Ended Queue where items can be inserted and removed from both ends.  Lecture 23. 

Implemented as a doubly-linked list with removeFront() and removeBack() methods.  The idea is similar to 
that above for stacks and queues. 

Rooted Trees | Set of nodes and edges that connect pairs of nodes (specialized graph).  Lecture 24. 

Properties 

 Exactly one path between any two nodes of tree  (as opposed to graphs, which allow any number of paths) 

 Each node has a single parent except for root node, which has no parent. 

 Root has no siblings by definition. 

 Any node can have any number of children.   (Binary trees, 2-3-4 trees, etc. will have different limitations) 
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Implementation 

 Children are stored as a (singly) linked list: parent’s firstChild field points to its left-most child, and each 
node points to its nextSibling. 

 Each child points back to its own parent. 

 

Tree Traversal Performance 

Example Tree: 

 
 

Type Preorder Postorder Inorder (Binary Trees Only!) Level Order  (by depth) 

Example Prefix Notation 
+ * 3 7 ^ 4 2 

Postfix Notation 
3 7 * 4 2 ^ + 

Infix Notation 
3 * 7 + 4 ^ 2 

N/A 
+ * ^ 3 7 4 2 

Order      1 
    / \ 
   /   \ 
  2     6 
 /|\   / \ 
3 4 5 7   8 

     8 
    / \ 
   /   \ 
  4     7 
 /|\   / \ 
1 2 3 5   6 

     4 
    / \ 
   /   \ 
  2     6 
 / \   / \ 
1   3 5   7 

     1 
    / \ 
   /   \ 
  2     3 
 /|\   / \ 
4 5 6 7   8 

Algorithm Visit current node, 
then visit children 
recursively. 
 
 
 
Similar to depth-first 
search in graphs. 

Visit each node’s 
children recursively, 
then visit itself. 
 
 
 
Similar to depth-first 
search in graphs. 

Recursive function.  Visit 
left child, then visit 
itself, then visit right 
child. 

Use a queue containing 
only root.  Dequeue 
node, visit it, and 
encode its children 
until queue is empty. 
 
Similar to breadth-first 
search in graphs. 

Runtime Each node in tree is visited once, so runtime for all of these traversals is    ). 
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Priority Queues / Binary Heap | Maps prioritized entries to values.  Limited to operations which identify or 
remove minimum (or some other order) key.  Lecture 25. 

If you have arbitrary keys which are not prioritized, consider using a dictionary/hash table.  If you need to be 
able operate on any arbitrary prioritized entry in an ordered dictionary, use a binary search tree. 

 

Note: Red-outlined subtree is also a binary heap. 

Properties/Invariants 

 Must satisfy heap-order property: no child has key less than parent’s key 
o Minimum key always at top of heap!  (root of tree) 

 Binary heaps are complete trees – every subtree is also a complete binary tree/each row of tree is filled as 
much as possible 

 Can be represented as either (i) a binary tree, or (ii) an array: root is in index 1, and for each node at index i, 

children are located at 2i and 2i+1 while parent node is at ⌊  ⁄ ⌋. 

 Keys in array are stored with level-order traversal (possible because tree is complete) 

Key Methods 

(i) public Entry min(); 
 If heap is empty, return null or throw exception 

 Otherwise, return Entry at root node 
(ii) public Entry insert(Object k, Object v); 

 
 Insert k at first open space (bottom of tree) 

 Bubble k up tree – swap with parent key while k < parent key 
(iii) public Entry removeMin(); 

 
 Remove entry at root and save for return value 

 Fill hole with last entry in tree x to ensure tree is complete 
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 Bubble x down tree by swapping x with minimum child key until x   child key OR it becomes leaf 
(iv) public void bottomUpHeap(); 

 
 Randomly dump all keys into a complete tree.  (Algorithm reorders keys as necessary.) 

 Begin at last internal (non-leaf) node.  If heap-order property is violated (child key is less than this 
key), swap with minimum child key.  Subtree now satisfies heap-order property. 

 Continue moving backwards until root is reached. 

Performance 

 Binary Heaps Sorted List/Array Unsorted List/Array 

min()    )    )    ) 
insert() 
     Worst Case: 
     Best Case: 

 
      ) 
   ) 

 
   ) 
   ) 

 
   ) 
   ) 

removeMin() 
     Worst Case: 
     Best Case: 

 
      ) 
   ) 

 
   ) 
   ) 

 
   ) 
   ) 

bottomUpHeap()    ) – G&T p.371 -- -- 

Ordered Dictionary / Binary Search Trees | Implementation of dictionary with ordered keys.  Generalizes 
functionality of priority queues and dictionaries.  Lecture 26. 

If your keys are not ordered and inexact key matches are not required, use a 
dictionary/hash table.  If your keys are prioritized but you only need to retrieve one 
type of key (say, the minimum), consider using a priority queue/binary heap.  

Properties 

 Each node can have up to two children, with each child designated either a left 
child or right child 

 All nodes except root have parent reference 

Invariants 

 For any node X, every key in left subtree of X   X's key. 

 For any node X, every key in right subtree of X   X's key. 

 Inorder traversal of a binary search tree visits nodes in sorted order. 

Key Methods   (G&T p.446) 

(i) public Entry find(Object k); 

 Start at root and repeatedly compare key k with current key. 

 If k == key, return the corresponding Entry. 

 If k < key, move to left child and repeat. 

 If k > key, move to right child and repeat. 

 Base cases: (i) node has been found, or (ii) node has no more children in wanted direction. 

 To find approximate matches, store largest key less than key and smallest key greater than key. 
(ii) public Entry first();  public Entry last(); 

 If tree is empty, return null. 
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 first() returns the minimum key, which is the left-most node.  Start at root and repeatedly go to 
left child until you reach node with no left child. 

 last() returns maximum key, which is right-most node.  Start at root and repeatedly go to right 
child until you reach node with no right child. 

(iii) public Entry insert(Object k, Object v); 
 Follow same path that find() follows.  When you reach null reference, replace null with new node 

with entry (k, v). 

 
(iv) public Entry remove(Object k); 

 Find key k in tree, or return null if it is not in tree 

Chd Algorithm 

0  Detach child from its parent and return. 
1  Move n's child up to take n's place.  n's child becomes the child of n's parent. 

(Redraw the pointer to bypass the removed node.) 

 
2  Let x be node in n's right subtree with smallest key (as if we were calling first() on that 

subtree). 

 Remove x and replace n's entry with x's entry 
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Performance 

Best-Case Scenario Worst-Case Scenario General Case 

Perfectly-Balanced Tree 

 

Severely-
Imbalanced Tree 

 

Any tree that satisfies 
binary search tree 
invariants 

Runtime:       ) 

Tree has maximum depth      , which is 
maximum number of recursive calls. 

2-3-4 Trees are always perfectly-balanced. 

Runtime:    ) Runtime:       )  

2-3-4 Trees | Tree structure that is always perfectly balanced, so runtime is always       ) time.  Lecture 27. 

 

2-3-4 Trees are always perfectly balanced, but insert and remove operations are more complicated and 
generally take longer (despite same asymptotic performance).  If there’s no need for a perfectly-balanced tree, 
consider using Binary Search Trees. 

Properties 

 Perfectly-balanced tree: there are between    and    leaves and         . 

 Each node (except leaves) have between 2-4 children. 

 Each node contains 1-3 keys.                                .  Subtree keys are stored as above. 

 Inorder traversal can be defined on 2-3-4 tree to return keys in sorted order. 

Key Methods 

(i) public Entry find(Object k); 

 Similar to binary tree: start at root and check k against keys.  Move to appropriate child until k is found 
or a leaf is reached. 

(ii) public Entry insert(Object k, Object e); 
 Walks down tree in search of k. 

 If it finds k, it proceeds to k's "left child"  (child immediately to left of k) and continues. 

 Whenever insert() encounters 3-key node, middle key is moved up to parent node. 
(Always break up 3-key nodes on path!). 
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(iii) public Entry remove(Object k); 

 Find key k.  If it's in a leaf, remove it.  If it's in an internal node, replace it with entry with next higher key 
(which is always in a leaf).   (Same method as binary search tree) 

 Get rid of 1-key nodes on path by restructuring tree: 
(i) If adjacent siblings have more than 1 key:  Rotation – try to steal key from adjacent sibling. 

 
(ii) If adjacent siblings only have 1 key:  Fusion – try to steal key from parent. 

 
(iii) If parent is root and contains only one key, and sibling contains only one key: 

 

Performance 

 Each tree contains    to    leaves, so number of entries         .  Height         ). 
 Constant time per node (but by larger factor than binary search tree) 
 Number of nodes proportional to height of tree.  All operations are    )        ). 

Graphs | Any set of V of vertices and E of edges which connect the vertices together.  Lecture 28. 

Properties 

 Can be directed or undirected.  If undirected,     )      ). 
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 Maximum of one copy of each edge.  If directed graph,     )      )! 

Representations and Performance 

Adjacency Matrix  (for complete graphs) Adjacency List  (for sparse graphs) 

 
 Table of booleans, where true indicates that edge 

exists. 
 If undirected graph, adjacency matrix is symmetric. 
 If weighted graph, use matrix of ints (weights). 

 
 Dictionary or array of lists 

 Lookup Runtime:     ) 
 DFS, BFS Runtime:   |  |) 
 Memory Use:    |  |)  (total possible edges) 

 Lookup Runtime:    ) 
 DFS, BFS Runtime:   | |  | |) 
 Memory Use:    | |  | |)  (number of vertices 

and edges from each vertex). 

Algorithms 

 Kruskal’s Algorithm – Minimum Spanning Trees 
(i)  Create new graph T with same vertices as G with no edges. 
(ii) Make list of all edges in G. 
(iii) Sort edges by weight, from lowest to highest. 
(iv) Iterate through edges in sorted order.  If u and w are not connected, add (u, w) to T. 

Runtime Performance:   | |  | |    | |) 

 Depth-First Search (DFS) – similar to preorder traversal in trees.  Search as deeply as possible. 
Code in Lecture 28. 

(i)  Start at arbitrary vertex and visit the vertex.  Mark vertex as visited. 
(ii) Iterate and recursively run dfs() on each edge for each vertex that has not been visited. 

Alternatively, use a stack! 
 Breadth-First Search (BFS) – similar to level-order traversal in trees.  Search by distance.  Code in Lecture 29. 

(i) Start at arbitrary vertex, mark as visited, and enqueue it. 
(ii) Dequeue a vertex and visit it.  Pass the origin into visit() as parameter. 
(iii) Enqueue each edge connected to an unvisited vertex. 
(iv) Repeat until queue is empty. 

 


