
CS 161 – Computer Security
Instructor: Tygar
2 December 2014

Notes on reading assembly code for CS 161 Fall 2014

For Midterm 3, as we have mentioned in class, you will need to be able to read basic 86-64 assembly code
produced by the gcc compiler. This handout will help you practice that skill.

First, some basic comments: when used without the optimizer, gcc produces a very restricted range of
assembly code. Generally, gcc’s code tends to follow restricted patterns, and to very closely follow the
C code as laid out, making it particularly easy to manually “de-compile” code.

Second, we will not be using any exotic features of the 86-64 assembly code – just standard features the
way we have discussed in class.

Third, we won’t be asking you to disassemble a large program or function on the midterm (for one thing,
there would not be sufficient time). So you should focus your attention on small programs or functions.

Fourth, you can generate as many examples as you want. Just compile using gcc –S program.c to
produce an assembly file program.s.

Bubblesort in C

Here is the classic bubblesort function in C. (Quick test: Shellsort was written by Mr. Shell (Donald
Shell). So who wrote bubblesort?)

void bubblesort(long list[], long n)
{
 long i, j, temp;

 for (i = 0 ; i < (n - 1); i++)
 for (j = 0 ; j < n - i - 1; j++)
 if (list[j] > list[j+1])
 {
 /* Swapping */
 temp = list[j];
 list[j] = list[j+1];
 list[j+1] = temp;
 }
}

Let’s compile it using gcc –S bubblesort.c on an 86-64 machine (such as a hive machine). Here
is the assembly code that we get:

 .file "bubblesort.c"
 .text
 .globl bubblesort

 .type bubblesort, @function
bubblesort:
.LFB0:
 .cfi_startproc
 pushq %rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, -16
 movq %rsp, %rbp
 .cfi_def_cfa_register 6
 movq %rdi, -40(%rbp)
 movq %rsi, -48(%rbp)
 movq $0, -8(%rbp)
 jmp .L2
.L6:
 movq $0, -16(%rbp)
 jmp .L3
.L5:
 movq -16(%rbp), %rax
 salq $3, %rax
 addq -40(%rbp), %rax
 movq (%rax), %rdx
 movq -16(%rbp), %rax
 addq $1, %rax
 salq $3, %rax
 addq -40(%rbp), %rax
 movq (%rax), %rax
 cmpq %rax, %rdx
 jle .L4
 movq -16(%rbp), %rax
 salq $3, %rax
 addq -40(%rbp), %rax
 movq (%rax), %rax
 movq %rax, -24(%rbp)
 movq -16(%rbp), %rax
 salq $3, %rax
 addq -40(%rbp), %rax
 movq -16(%rbp), %rdx
 addq $1, %rdx
 salq $3, %rdx
 addq -40(%rbp), %rdx
 movq (%rdx), %rdx
 movq %rdx, (%rax)
 movq -16(%rbp), %rax
 addq $1, %rax
 salq $3, %rax

 addq -40(%rbp), %rax
 movq -24(%rbp), %rdx
 movq %rdx, (%rax)
.L4:
 addq $1, -16(%rbp)
.L3:
 movq -8(%rbp), %rax
 movq -48(%rbp), %rdx
 movq %rdx, %rcx
 subq %rax, %rcx
 movq %rcx, %rax
 subq $1, %rax
 cmpq -16(%rbp), %rax
 jg .L5
 addq $1, -8(%rbp)
.L2:
 movq -48(%rbp), %rax
 subq $1, %rax
 cmpq -8(%rbp), %rax
 jg .L6
 popq %rbp
 .cfi_def_cfa 7, 8
 ret
 .cfi_endproc
.LFE0:
 .size bubblesort, .-bubblesort
 .ident "GCC: (GNU) 4.6.3 20120306 (Red Hat 4.6.3-2)"
 .section .note.GNU-stack,"",@progbits

As we look at this code we can immediately remove lines beginning with a dot – those are assembly
directives. Also, we can remove addresses of the form .LF which are also used as assembly directives.
Removing that, we get a slimmer version of the file:

bubblesort:
 pushq %rbp
 movq %rsp, %rbp
 movq %rdi, -40(%rbp)
 movq %rsi, -48(%rbp)
 movq $0, -8(%rbp)
 jmp .L2
.L6:
 movq $0, -16(%rbp)
 jmp .L3
.L5:
 movq -16(%rbp), %rax

 salq $3, %rax
 addq -40(%rbp), %rax
 movq (%rax), %rdx
 movq -16(%rbp), %rax
 addq $1, %rax
 salq $3, %rax
 addq -40(%rbp), %rax
 movq (%rax), %rax
 cmpq %rax, %rdx
 jle .L4
 movq -16(%rbp), %rax
 salq $3, %rax
 addq -40(%rbp), %rax
 movq (%rax), %rax
 movq %rax, -24(%rbp)
 movq -16(%rbp), %rax
 salq $3, %rax
 addq -40(%rbp), %rax
 movq -16(%rbp), %rdx
 addq $1, %rdx
 salq $3, %rdx
 addq -40(%rbp), %rdx
 movq (%rdx), %rdx
 movq %rdx, (%rax)
 movq -16(%rbp), %rax
 addq $1, %rax
 salq $3, %rax
 addq -40(%rbp), %rax
 movq -24(%rbp), %rdx
 movq %rdx, (%rax)
.L4:
 addq $1, -16(%rbp)
.L3:
 movq -8(%rbp), %rax
 movq -48(%rbp), %rdx
 movq %rdx, %rcx
 subq %rax, %rcx
 movq %rcx, %rax
 subq $1, %rax
 cmpq -16(%rbp), %rax
 jg .L5
 addq $1, -8(%rbp)
.L2:
 movq -48(%rbp), %rax
 subq $1, %rax

 cmpq -8(%rbp), %rax
 jg .L6
 popq %rbp
 ret

Disassembling the code

Now, let’s work on understanding the assembly code. In fact, we’ll assume that we have just the
assembly code and no source code. The first thing to notice is that many opcodes end with a “q”. That
indicates that they are “quadword” (a word is 16 bits, so 64 bit) values. Some other suffixes to know are
“b” (for byte), “w” (for word – 2 bytes), and “l” (for doubleword (long) – 4 byte values). So, all the
values we are dealing with here 64 bit values – or what C (on 86-64 architectures) calls long. (On 32 bit
architectures, a “long” was 32 bits – so that’s why assembly code uses the “l” suffix for 32 bit values.)

Now, let’s start with the first line of assembly code. I’ll write the assembly code fragments in red to make
it easy to distinguish from other code:

bubblesort:

This is a label, and allows us to know we are defining a function “bubblesort.” So far, our
reconstruction is:

bubblesort()
{
}

Now, let’s remember how registers are used. Notice that each register can be accessed as an eight-byte
(quadword) value (e.g., %rax), a four-byte (doubleword) value (e.g., %eax), a two-byte (word) value
(e.g., %ax) or a byte (e.g., %al) value. Notice that %rbp is reserved for use as the frame pointer and
%rsp is reserved for use as the stack pointer.

Looking through the assembly code, we can the see the following registers being used: %rbp, %rsp,
%rdi, %rsi, %rax, %rdx, and %rcx.

 pushq %rbp
 movq %rsp, %rbp

This code begins every function. It saves the old frame pointer on the stack, and creates a new frame
pointer by copying the stack pointer to the frame pointer register (%rbp).

 movq %rdi, -40(%rbp)
 movq %rsi, -48(%rbp)

Now we are saving values on the stack. The stack grows down. We save the first argument at -40 from
the frame pointer. We save the second argument at -48 from the frame pointer. This means that we have
two long arguments (x, y) to the function. So far our reconstruction is

bubblesort(long x, long y)
{
}

 movq $0, -8(%rbp)

Now we are saving a value 0 to some variable on the stack. Thus we must have some long variable. So
far our reconstruction is:

bubblesort(long x, long y)
{
 long a;
 a=0;
}

 jmp .L2

This jump instruction is typically used in some sort of control structure. Since there is not a test here, we
can infer that it is a loop structure (rather than an if structure). Let’s use the most general loop structure –
the while statement. So far our reconstruction is:

bubblesort(long x, long y)
{
 long a;
 a=0;
 while ()
 {
 }
}

.L6:
 movq $0, -16(%rbp)
 jmp .L3

This saves another (long) variable value, and starts another loop. So far our reconstruction is

bubblesort(long x, long y)
{
 long a, b;
 a=0;
 while ()
 {
 b=0;
 while()
 {
 }

 }
}

.L5:
 movq -16(%rbp), %rax
 salq $3, %rax
 addq -40(%rbp), %rax
 movq (%rax), %rdx

So now we are using the variable stored at -16(%rbp), multiplying it by 8 (using a shift-arithmetic-left
by 3 bits instruction), adding the address at x to it, and fetching the value at the resulting address into
%rdx. This implies that x is an array, and since we multiplied it by 8, it must be an array of long
values. So far our reconstruction is

bubblesort(long x[], long y)
{
 long a, b;
 a=0;
 while ()
 {
 b=0;
 while()
 {
 /* calculate x[b] */
 }
 }
}

 addq $1, %rax
 salq $3, %rax
 addq -40(%rbp), %rax
 movq (%rax), %rax

This is very similar except we are now computing x[b+1] and saving the result in %rax. So far our
reconstruction is:

bubblesort(long x[], long y)
{
 long a, b;
 a=0;
 while ()
 {
 b=0;
 while()
 {
 /* calculate x[b] and x[b+1] */

 }
 }
}

 cmpq %rax, %rdx
 jle .L4

Now we compare x[b] and x[b+1], and if x[b] > x[b+1], we execute code (otherwise we skip
ahead). This is a classic if statement. So far our reconstruction is:

bubblesort(long x[], long y)
{
 long a, b;
 a=0;
 while ()
 {
 b=0;
 while()
 {
 if (x[b] > x[b+1])
 {
 }
 }
 }
}

 movq -16(%rbp), %rax
 salq $3, %rax
 addq -40(%rbp), %rax
 movq (%rax), %rax
 movq %rax, -24(%rbp)

As above, we find the value at x[b], and now we store it in a new location (indicating a new variable), -
24(%rbp). So far our reconstruction is:

bubblesort(long x[], long y)
{
 long a, b, c;
 a=0;
 while ()
 {
 b=0;
 while()
 {
 if (x[b] > x[b+1])
 {

 c = x[b];
 }
 }
 }
}

 movq -16(%rbp), %rax
 salq $3, %rax
 addq -40(%rbp), %rax
 movq -16(%rbp), %rdx
 addq $1, %rdx
 salq $3, %rdx
 addq -40(%rbp), %rdx
 movq (%rdx), %rdx
 movq %rdx, (%rax)

Using similar reasoning to above, we see that we are looking up the value at x[b+1]and put it in x[b].
So far our reconstruction is:

bubblesort(long x[], long y)
{
 long a, b, c;
 a=0;
 while ()
 {
 b=0;
 while()
 {
 if (x[b] > x[b+1])
 {
 c = x[b];
 x[b] = x[b+1];
 }
 }
 }
}

 movq -16(%rbp), %rax
 addq $1, %rax
 salq $3, %rax
 addq -40(%rbp), %rax
 movq -24(%rbp), %rdx
 movq %rdx, (%rax)
.L4:

Using similar reasoning to above, we see that we are storing c at x[b+1]. We also see that the label
.L4:, indicating that this the end of the if statement. (If there were an else clause, we would expect a
jmp opcode here. So far our reconstruction is:

bubblesort(long x[], long y)
{
 long a, b, c;
 a=0;
 while ()
 {
 b=0;
 while()
 {
 if (x[b] > x[b+1])
 {
 c = x[b];
 x[b] = x[b+1];
 x[b+1] = c;
 }
 }
 }
}

 addq $1, -16(%rbp)
.L3:

We add 1 to b. Then we see the label .L3: indicating that we are now in the condition phase of the inner
while loop. So far our reconstruction is:

bubblesort(long x[], long y)
{
 long a, b, c;
 a=0;
 while ()
 {
 b=0;
 while()
 {
 if (x[b] > x[b+1])
 {
 c = x[b];
 x[b] = x[b+1];
 x[b+1] = c;
 }
 b++;
 }

 }
}

 movq -8(%rbp), %rax
 movq -48(%rbp), %rdx
 movq %rdx, %rcx
 subq %rax, %rcx
 movq %rcx, %rax
 subq $1, %rax
 cmpq -16(%rbp), %rax
 jg .L5

We move load a into %rax and y into %rdx (and then %rcx), and compute y-a-1, and see if it is
greater than b. If so, we proceed with the while loop. Our reconstruction so far is:

bubblesort(long x[], long y)
{
 long a, b, c;
 a=0;
 while ()
 {
 b=0;
 while(b < y-a-1)
 {
 if (x[b] > x[b+1])
 {
 c = x[b];
 x[b] = x[b+1];
 x[b+1] = c;
 }
 b++;
 }
 }
}

 addq $1, -8(%rbp)
.L2:

We add 1 to a. Then we see the label .L2: indicating that we are now in the condition phase of the outer
while loop. So far our reconstruction is:

bubblesort(long x[], long y)
{
 long a, b, c;
 a=0;
 while ()

 {
 b=0;
 while(b < y-a-1)
 {
 if (x[b] > x[b+1])
 {
 c = x[b];
 x[b] = x[b+1];
 x[b+1] = c;
 }
 b++;
 }
 a++;
 }
}

 movq -48(%rbp), %rax
 subq $1, %rax
 cmpq -8(%rbp), %rax
 jg .L6

Now we are figuring out the condition in the outer while loop. We calculate n-1, and see if it is greater
than a. If it is, we go through the loop. So far our reconstruction is:

bubblesort(long x[], long y)
{
 long a, b, c;
 a=0;
 while (a < n-1)
 {
 b=0;
 while(b < y-a-1)
 {
 if (x[b] > x[b+1])
 {
 c = x[b];
 x[b] = x[b+1];
 x[b+1] = c;
 }
 b++;
 }
 a++;
 }
}

 popq %rbp
 ret

This is standard return code from a function. We pop the old values to the frame pointer, and return from
the call.

One final question – does this code return a value? If so, it will be stored in %rax. This value is n-1.
Now, we cannot tell from just this code whether the function returns n-1 or whether this just junk and the
function returns nothing. Thus, we have two final possibilities:

void bubblesort(long x[], long y)
{
 long a, b, c;
 a=0;
 while (a < n-1)
 {
 b=0;
 while(b < y-a-1)
 {
 if (x[b] > x[b+1])
 {
 c = x[b];
 x[b] = x[b+1];
 x[b+1] = c;
 }
 b++;
 }
 a++;
 }
}

or

long bubblesort(long x[], long y)
{
 long a, b, c;
 a=0;
 while (a < n-1)
 {
 b=0;
 while(b < y-a-1)
 {
 if (x[b] > x[b+1])
 {
 c = x[b];
 x[b] = x[b+1];

 x[b+1] = c;
 }
 b++;
 }
 a++;
 }
 return n-1;
}

Now, in this example we want through a lot of explanation and repetition of our reconstructed code,
which is how we ended up with a fifteen-page long note. In the midterm, we would not ask you to
disassemble such a long stretch of assembly code. However, you should be sure you are comfortable
looking at assembly code and understanding what is going on.

Why is disassembly important? Because it is almost certain that in some point in your careers as working
software engineers that you will need to examine machine code or assembly code and figure out what is
going on. That may be because of a security reason (as we have done in this class), but it may be for
another reason too: maybe you will be optimizing code in an embedded system, or chasing down a bug in
a compiler, or trying to debug some subtle race condition or parallel computing situation. In any case, the
ability to read assembly code is absolutely vital to being a successful security or systems software
engineer.

