
Memoization:

• Use a n-dimensional array if need be, one dimension for each
param + one for each result

• Alternatively, use a HashMap, and make custom Pair() that
overrides equal.

Random Sequences:

• Simpulations, cryptography, games.

• Pseudorandom - hard to predict, usualy uniform
distribution within a range

• Linear Congruental - seed X0, then Xi = (aXi−1 + c)
mod m. period = m.

• Additive Generator - Xn random for n < 55, then
= Xn−24 + Xn−55 mod 2e. Period = 2f (255 − 1)

• Shuffling - swap shuffle from tail to start.

• Floyd selection alg - either put number in, or counter. (see
lec32 pg 15)

Java:

• java.util.Random, Random() based on time, also exists
Random(seed).

• next{int, double, long, float, boolean, gaussian}

• Collections.shuffle(list, random)

Graphs:

• Definition: A set of vertices and edges connecting those
vertices.

• Uses: Makefiles, maps, any related data.

• Topological sort - order on number line, all ”arrows” point
one way.

• shortest path (Djikstras) - find shortest path to location.
Expensive without heuristic filtering. (A*)

• Minimal spanning tree - telephone wire problem. Long path
is okay, we just want minimal sum of edge lengths.

• union-find structures - two sub-graphs, combine with one
edge.

• memory management as graph (loops, counters on pointers.)

Threads:

• Multiple threads - used for concurrent tasks

• Thread takes a Runnable and executes the run method, or
executes thread.start()

• Used for GUI apps, networking, parallel computing, etc.

Memory Management:

• Scheduler alternates rapidly between each thread.

• sleep() triggers a context switch, if there are other
candidates to run.

• notify() and notifyAll() - used in objects to let them know a
lock has been released.

• Unpredictable - we can’t control order of thread execution

• concurrency problems - read, pause, write. During pause
value may change causing error.

• Solution to concurrency - locks. Only one thread accesses
object at a time.

• Problem with above statement - dead lock issues. Each
thread waiting for the other.

• message passing - solution v2. This allows threads to
process tasks in their own time.

Traversals:

• preVisit, visit, postVisit. Use marked set and fringe of
action items.

• BFS - 1.Enqueue the root node
2.Dequeue a node and examine it.
3. If the element sought is found in this node, quit the
search and return a result.
4. Otherwise enqueue any successors (the direct child nodes)
that have not yet been discovered.
5. If the queue is empty, every node on the graph has been
examined quit the search and return ”not found”.
6. If the queue is not empty, repeat from Step 2.

• DFS - like BFS, but use stack instead of queue.

Random (from old finals):

• Binary trees have 2k−1 elements at a level k, where k is the
level number. Total number of nodes is 2N , where N is the
number of levels. Visit N nodes with BFS, means you visit
2N with iterative deepening.

• Memoized functions have funky run times. Use
multidimensional integer arrays for args and results, and be
sure to include the fill time in the dimension, ie,
memo[x][y][z] = O(xyz) and memo[x][y] with O(z) for fills is
still O(xyz)

Trie:

• Long strings and chains, follow down till you see diff. Ie,
bob and bo go b-o-””,-b

Sort Identification:

• Check for LSD/Radix - easy to spot digits in order

• Check what changed between each step, note indices and
properties - know Shell’s sort

• Try to spot pivots (column where same element occurs) -
merge sort or quick sort

Run time analysis:

• Find most constly statement

• Be on the lookout for loops

• Know summation formulas:
n∑

i=1
i2 =

n(n+1)(2n+1)
6

,

n∑
i=1

i =
n(n+1)

2

• Know the progression of growth - order of times:
1 < log(n) < n < nlog(n) < n2 < 2n < O(n!)

1. Relax.
2. You will do GREAT!
3. The ”A” is yours.

CS61b Final Study Guide, by Ivan ”Vania” Smirnov


