
Powers of 2:

• 1, 2, 4, 8, 16, 32(5), 64, 128, 256, 512, 1024(10)

• Prefixes (by powers of 210): kibi(10), mebi(20), gibi(30),
tebi(40), pebi(50), exbi(60), zebi(70), yobi(80)

• Split power of two into tens and ones, use first line to get
number, second line to get name. ie, 223 = 23 mebi = 8 mb.

MIPS Basics:

• 32 registers, 32 bits for data or instructions

• R instruction: 0 opcode, 26 funct codes. 61 regular, 3 for
srl, sll, sra

• I instruction: 61 opcodes, mirror of R. branch limits: PC -
217 to PC + 217 -4.

• J instruction: 2 opcodes (j, jal), target is PC[32:29](target ¡¡
2). limits: 228 (?)

• Declarations. Text = machine code , Data = binary rep of
data , word = 32 bit quantities in order.

• Memory - code at bottom, then static, then heap (grows
up). Stack at top, grows down.

• RTL - reg trans lang - ”madd rd, rs, rt” –¿ R[rd] =
Mem[R[rs]] + R[rt]; PC = PC + 4

Gotchas:

• Remember to sll by 2 when adding counters to pointers - we
need word alignment!

• Iterative vs recursive - good compiler can optimize well, so

• Prologue and Epilogue - save ra and all non temp vars to
stack, then restore.

• BNE has range 16+2, since last 2 bits are zeros. Also, 2’s
complement.

Bit Twidling:

• AND : 0, 0, 0, 1. used to turn bits OFF (X AND 0)

• OR : 0, 1, 1, 1. Used to turn bits ON (X AND 1)

Caches:

• Compute cache size = 2(indexbits + rowbits)

• Temporal locality - youngest element likely touched again

• Spatial locality - memory reads are often sequential or at
least close in space.

• Dirty bit for write-back, valid bit for tag.

• Direct Mapped - each memory location associated with
exactly ONE location - ie, 4 spots and mod 4.

• N-Way Set Associative - map to rows, but rows have N
blocks. 2-way gives great performance boost, avoid ping
pong. Remove oldest elem. (LRU)

• Fully Associative - blocks go anywhere. Hard to find stuff.

• Offset - # bytes is ln width of cache (4 words, 2 bits)

• Index - # bytes is ln # rows in cache (32 rows, 5 bits)

• Tag - what remains. (32 - 2 -5 = 25 bits.)

• Write through - write to cache and memory

• write-back - write to memory on flush, uses dirty bit.

• bits = tag + valid bit + (dirty bit) + data (8*B)

Miss Types:

• Compulsory - cache empty, so everything misses (cold start)

• Conflict - two blocks map to same space, so forced to swap
out

• Capacity - cache is small, so we often run out of space.

Running a Program (CALL):

• Compile - High level to low level. C → MIPS.

• Assemble - Outputs Object code and information tables.
Replaces pseudo instructions.

• Link - Input: object file header, text, data, reloc info,
symbol table, debug info. Output executable code.

• Load - Allocates space, copies code and static vars into
mem, init regs and set stack pointer.

Map reduce

• Map - Takes in data, emits intermediate (key, value)

• Combiner - combines values from map into lists, so less
spamming of reducer

• Reduce - takes (key, value[]) and simplifies down into (key,
result). Writes to output.

Datapath

• 5 steps in MIPS cpu - IF = instruction fetch, ID =
instruction decode, EX = execution(Mem-ref - calculate
address, Arith-log : perform operation), Mem = load and
store data from and to memory, WB: Write Data Back to
Register

• 3 types of hazards

• 1. Structural Hazards - Prevent next logical instruction in
next clock cycle. Hazards that occur due to competition for
the same resource (register file read vs. write back,
instruction fetch vs. data read). Caching and clever register
timing can solve these hazards.

• 2. Data Hazard - Need to wait for previous instruction to
complete its data read/write - alu results. Hazards that
occur due to data dependencies (instruction requires result
from earlier instruction). These are mostly solved by
forwarding, but lw still requires a bubble.

• 3. Control Hazard - Deciding on control action depends on
previous instruction - jumps, branches. Hazards that occur
due to non-sequential instructions (jumps and branches).
These cannot be solved completely by forwarding, so were
forced to introduce a branch-delay slot (MIPS) or use
branch prediction.

• Bubbles - Need to send in a nop, all 0’s. Used to stall.

• Flush - happens when branch prediction fails, have to kill
currently executing inst.

• Pipelining - split up actions into stages, each taking around
the same time. Latency is sum of all steps, throughput is
single step. Compare this to single cycle, where you can
stretch on step and still be okay.



GPU

• Throughput optimized. Many slow cores. Errors happen but
not critical. Lots of mem bandwidth. terminology

• Have to load data into GPU mem, using CUDA.

• Each function is called a kernel, called with a specific
geometry. SIMD.

• Threads organized into 3D blocks. Then organized into 3D
grid.

• Have to check bounds constantly, otherwise massive errors.

OpenMP

• Uses blocks with common commands - pragma omp parallel
(command here)

• Dataraces - without a critical block or manual intervention,
can read and write at the same time.

• fork-join model - main process forks into parallel, then joins
back up.

• Good on multicore machines.

Boolean Logic

• Laws: Or is +, AND is *. Commutative, distributive.

• ¬AA = 1, ¬(X + Y + Z) = ¬X¬Y ¬Z, X(X + Y ) = X,
Y (X + ¬Y = XY )

• ¬(A + B) = ¬A¬B

• Converting from state machine to formula - list state bits
and input, then output and next state bits. Write formula
for every output that’s a one, then simplify with boolean
laws.

combinational logic

• draw an OR, NOT, NOR, AND, etc. - know symbols

• How to get clock rate - find longest path between two
registers, and convert to Hz (1/freq)

Flynn Taxonomy

• {Single, Multiple} Instruction {Single, Multiple} Data.

• SIMD and MIMD most common today.

Virtual Memory

• page size 4KiB

• pages all same sizes, saved to disk into swap

• TLB - usually 128 entries - set or fully ass.

• Offset - log page size.

• Page Table - holds all entries of VA’s - map to either mem
or disk. So size is based on virtual mem, not phys.

• Step by step process - get addr, ignore offset, look at index.
Check TLB, then check Page Table. If in memory, page
table says where, otherwise, page fault and go to disk. Use
offset to pull out byte from page.

• Ways to improve rates - make TLB larger, make Phys mem
larger, make memory/disk faster.

• VA is split into VPN and page offset. PA is also split into
PPN and page offset. page offset is same for both, since
page size is equal.

• log(page size) = page offset bits. The rest of the bits are for
VPN and PPN.

• Page table holds VPN, valid bit, dirty bit, permissions, and
PPN. This is a mapping. Index = VPN.

• TLB (Translation Lookaside Buffer) holds MRU VPN tags.
Usually small, around 128 entries. Set or fully ass.

• Page table can have at most # phys pages valid entries.

IO

• polling - every n time units, check ready bit. formula:
(poll/s * clocks/poll)/(total clocks)

• polling disk - (mb/s) / (b/poll) = (poll/s), then
(poll/s)*(clocks/poll), then all over (total clocks / sec).

• interrupts - proceed as normal, then respond to an interrupt.
formula: (% active) * (X Mb/s) / (X Bytes/interrupt) =
(interrupts / second). take that, and multiply by (clocks /
interrupt) , and then take that over (total clocks / second).

• Memory mapped IO - bits of memory mapped to a device.
We write bits to 0xFFFF000, get data sent to device. dgaf
how. (abstraction)

Random

• AMAT = Time for a hit + Miss rate * Miss Penalty

• Strong scaling is when adding more machines makes your
algorithm faster on a given data.

• Weak scaling is when adding more machines lets you process
more data in the same amount of time.

• Amdahls law = 1

(1−P )+P
S

• malloc - n*sizeof(datatype), not just n.

1. Relax. This test will not matter in 5 years.
2. You survived 61a and 61b, you can do this too.
3. The ”A” is yours.

CS61c Final Study Guide, by Ivan ”Vania” Smirnov
BTC donation address: 14i5jja4KLoUD9jTetbz4AEtTV9Ud1WpsW

2


