
Powers of 2:

• 1, 2, 4, 8, 16, 32(5), 64, 128, 256, 512, 1024(10)

• Prefixes (by powers of 210): kibi(10), mebi(20), gibi(30),
tebi(40), pebi(50), exbi(60), zebi(70), yobi(80)

• Split power of two into tens and ones, use first line to get
number, second line to get name. ie, 223 = 23 mebi = 8 mb.

MIPS Basics:

• 32 registers, 32 bits for data or instructions

• R instruction: 0 opcode, 26 funct codes. 61 regular, 3 for
srl, sll, sra

• I instruction: 61 opcodes, mirror of R. branch limits: PC -
217 to PC + 217 -4.

• J instruction: 2 opcodes (j, jal), target is PC[32:29](target ¡¡
2). limits: 228 (?)

• Declarations. Text = machine code , Data = binary rep of
data , word = 32 bit quantities in order.

• Memory - code at bottom, then static, then heap (grows
up). Stack at top, grows down.

Conditionals:

• blt (<) = slt, bne t 0 TARGET

• ble (<=) = slt, beq t 0 TARGET

• bgt (>) = slt flip, bne

• bge (>=) = slt flip, beq

Gotchas:

• Remember to sll by 2 when adding counters to pointers - we
need word alignment!

• Iterative vs recursive - good compiler can optimize well, so

• Prologue and Epilogue - save ra and all non temp vars to
stack, then restore.

• BNE has range 16+2, since last 2 bits are zeros. Also, 2’s
complement.

•

Sample Code: swap: sll $a1, $a1, 2 # word align i1 sll $a2,
$a2, 2 # word align i2 addu $a1, $a0, $a1 # arr+i1 addu $a2,
$a0, $a2 # arr+i2 lw $t0, 0($a1) # temp = *(arr+i1) lw $t1,
0($a2) # temp2 = *(arr+i2) sw $t0, 0($a2) # *(arr+i2) = temp
sw $t1, 0($a1) # *(arr+i1) = temp2 jr $ra # return

void swap(int * arr, int i1, int i2) int t = arr[i1]; // use t ¡–¿
$t0 arr[i1] = arr[i2]; arr[i2] = t;

entry label: addi $sp, $sp, -framesize; sw $ra, framesize-4($sp)
... exit label: lw $ra, framesize-4($sp); addi $sp, $sp, framesize; jr
$ra

Bit Twidling:

• AND : 0, 0, 0, 1. used to turn bits OFF (X AND 0)

• OR : 0, 1, 1, 1. Used to turn bits ON (X AND 1)

Average access time formula - get from homework. C - 0 is false. is
null.

Caches:

• Compute cache size = 2(indexbits + rowbits)

•

• Temporal locality - youngest element likely touched again

• Spatial locality - memory reads are often sequential or at
least close in space.

• Dirty bit for write-back, valid bit for tag.

• Direct Mapped - each memory location associated with
exactly ONE location - ie, 4 spots and mod 4.

• N-Way Set Associative - map to rows, but rows have N
blocks. 2-way gives great perfomance boost, avoid ping
pong. Remove oldest elem. (LRU)

• Fully Associative - blocks go anywhere. Hard to find stuff.

• Offset - # bytes is ln width of cache (4 words, 2 bits)

• Index - # bytes is ln # rows in cache (32 rows, 5 bits)

• Tag - what remains. (32 - 2 -5 = 25 bits.)

• Write through - write to cache and memory

• write-back - write to memory on flush, uses dirty bit.

• bits = tag + valid bit + (dirty bit) + data (8*B)

Miss Types:

• Compulsory - cache empty, so everything misses

• Conflict - two blocks map to same space, so forced to swap
out

• Capacity - cache is small, so we often run out fo space.

Running a Program (CALL):

• Compile - High level to low level. C → MIPS.

• Assemble - Outputs Object code and infomration tables.
Replaces pseudo instructions.

• Link - Input: object file header, text, data, reloc info,
symbol table, debug info. Output executable code.

• Load - Allocates space, copies code and static vars into
mem, init regs and set stack pointer.

Floating point:

• sign bit, exponent bits, then significand.

•

1. Relax. This test will not matter in 5 years.
2. You survived 61a and 61b, you can do this too.
3. The ”A” is yours.

CS61c Midterm 1 Study Guide, by Ivan ”Vania” Smirnov
BTC donation address: 14i5jja4KLoUD9jTetbz4AEtTV9Ud1WpsW

