
Inheritance and Interfaces

• Implements - an interface, signs contract and must define
those methods

• Extends - ”is a” marked as subclass of parent, inherits stuff
except private (?)

• Interfaces can be used as static containers - that’s the point.
Pet, Machine, etc.

Static vs Dynamic

• Local variaable - only within method

• Class variable - shared by all instances. can be
accessed by Class.variable

• Instance variable - this.variable

• ONLY instance methods accessed by dynamic type

• static methods use static type and class variables

Scope

1. asking for field or static method => use static type

2. asking for non-static method => use dynamic type

3. ”this” within a [particular class] => static type becomes
[particular class], dynamic type same

4. a method of dynamic type D and static type S is calling a
non-static [method], then the [method] has to exist in S (not
necessarily in D)

5. static methods must be overridden by static methods,
non-static must be overridden by non-static

6.

7. Look up static methods and fields of any time in the class of
the static type.

8. Look up instance methods in the class of the dynamic type.

9. Additionally, whenever a call is made to an instance
method, keep in mind that the this pointer also has a static
and dynamic type, so when you call a method like f() or
this.f(), you also have to use the same rules to determine
which method actually gets called.

Emacs and GJDB Emacs:

• C-x c-s - save

• C-x c-f - load file

• M-x compile - execute command (make)

• M-x gjdb - debug.

GJDB

• C-c C-s - step (step into it(?))

• C-c C-n - next (next breakpoint/line)

• C-c < - up (to caller)

• C-c > - down (into call (?))

• C-c SPACE - set break point

• javac -g Main.java to debug, then do gjdb Main

• run - starts program

• where - prints stack trace

• up - climbs to parent frame

• down - undo an ”up”

• print E - prints E

• quit - duh

• break - make a breakpoint

• cont - continue

• step - executes line, stops at start of next line

Javadoc
Lists

• add(?index?, elem), clear(), get(elem), remove(), size()

• contains(elem), indexOf(elem), isEmpty(elem), iterator()

Arrays

• use bracket notation

• .length to get size

Converting numbers

• Note - notation is 0xFF for hex and 0b1010 for binary

• binary to decimal - split into sums of powers of 2.

• decimal to binary - convert to powers of two and add

• decimal to hex - convert to binary, then group by 4 bits, and
find corresponding value. A = 10 (1010), B = 11, C = 12, D
= 13, E = 14, F = 15 (1111).

• binary to hex - see above.

• hex to decimal - either add powers of 16, or convert to
binary then decimal

• hex to binary - for each element, find 4-bit sequence, and
concatenate.

Running Time

• O - bounded above, worst case scenario. can be overly
pessimistic

• Ω - bounded below, can be overly optimistic

• Θ - bounded adove and below, tight bond. ”Family”

General tips for finding running time

• loops are a variable with length = number of times
loop runs

• nested loops cause squaring. even smart nested loops
just cut time in half, so we ignore the constant

• If we cut search space in half, we get lg time

• if we make recursive calls, say 2, we get 2n time, so
exponential (think bacteria dividing)

• Take limit of fraction
f(x)
g(x)

. if ∞ then f(x) bigger, if 0

g(x) bigger, if constant then f(x) ∈ O(g(x))

•
n∑

i=1
i2 =

n(n+1)(2n+1)
6

,
n∑

i=1
i =

n(n+1)
2

• Order of times:
1 < log(n) < n < nlog(n) < n2 < 2n < O(n!)



Bit shifting

• >> - arithmetic right (shift and fill with sign). ie,
1001 >> 2 = 1110. the 01 tail is dropped, and leading one is
cloned and shifted in. Divides by 2N and rounds down.

• << - arithmetic left. ie, 1001 >> 2 = 0100. the 10 lead is
dropped, and 2 zeros shifted in on the right. Basically
multiplying by 2N , with N = shift

• >>> - logical right . ie, 10101 >>> 3 = 00101. Drop tail,
shift, and fill in front with zeros.

• ˜∼ (NOT) - flip all bits.

• ˆ (XOR) - 0, 1, 1, 0 - (even bits problem, flip back and forth)

• & (AND) - 0,0,0,1

• | (OR) - 0,1,1,1

• masking - use hex number, shift it to desired position and
AND to target. Ie, 0x15 is 4 ones, so 0x15 << 2 would
extract bits 6,5,4,3, and nuke bits 2 and 1

• Inverse masking x&∼M extracts all BUT M

• two’s complement - leading 1 means negative, so flip bits
and add 1

Note - 2’s complement - if number starts with a 1 it’s negative, so
flip all bits and add 1, and that number is the negative number.
so 1010→ 0101 + 1→ 0110 = −6

Powers

• 2 = 10, 21, 42, 83, 164, 325, 646, 1287
2568, 5129, 102410, 204811, 409612

• 16 = 10, 161, 2562, 40963, 655364

Access modifiers

• private - only this class can use it - no subclasses or anything

• package private - only class, package, and subclass IN
SAME package can access

• protected - class, package, subclass can access

• default - class and package can access, not subclass or world

• public - world accessible

Functions as Objects OOP slide 3 of review session lecture 19
minute 40:00
public abstract class IntFunction {

public abstract int apply(int x);
public final static IntFunction ID = new IDFunction();
public IntFunction compose(IntFunction g){

return new Composition(this, g);
}
private static class IDFunction extends IntFunction {

public int apply(int x) {return x;}
}
private static class Composition extends IntFunction {

Composition(IntFunction f, IntFunction g) { f = f ;
g = g; }

public int apply(int x) {return f.apply(g.apply(x)); }
}

}

Random Notes

• Destructive = no new operators, use reassignment (intlist
tails, etc)

• non-destructive - be sure to use NEW operators

• Functions as objects - some internal state (for adder), apply
does the actual function - adder.applyn + arg

Exceptions

• Unchecked - programmer errores - bad arg, null pointer, etc.
can be thrown ANYWHERE by JVM

• Checked - crazy circumstances, forseen but not programmer
error. ie, file DNE, connection dropped, etc

• Checked should use try catch statement. add ”Throws” to
method signature

• Relax!

• This is the last push.

• You know this, and you will do well.

• Channel!

2


