
CS61b Midterm 2 Study Guide, by Ivan ”Vania” Smirnov

Trees:
Properties:

• Used for hierarchical structure where subsets logical.

• Traversal is O(N), N = number of nodes.

• Find is O(logk N), assuming bushy tree with k children at
nodes.

• Insertion - add to some random child, then bubble up.

• Deletion - remov node, promote child, make sure tree is
balanced.

• (Bonus) Quadtrees - use coordinate notation, divide space
into 4.

Traversals:

• Inorder - Traverse child.left, node, child.right (BST only)
(Infix Notation)

• Post-order - traverse children, visit node (polish (?))

• Pre-order - visit node, traverse children (Prefix notation)

• BFS - use queue, add each node to end, traverse first node.(
see HKn slides)

Data Structures:

• Queue - FIFO. Pop from front, add to back.

• Heap (Priority Queue)

– Functions: add, findLargest, removeLargest

– Node is always greater than anything in children (or
less than.).

– Insertion - lgN . Process - insert and reheapify.

– Removal - move (bottom, right) to top node, then
reheapify (swap node with larger child).

– Array storage - store in array starting at 1. Node at
position k has children at 2k and 2k + 1, and parent at
floor(k/2)

• Stack - FILO. Add and pop to ends only.

• Tree - Nodes with children.

• List - can add at any place, get size, find items, etc.
Standard stuff.

Sorting:

• Insertion Sort - Θ(Nk) comparisons and moves, where k is
max distance of displacement.

• Quicksort - Find pivot. Split into 3 lists - less, equal, grater
pivot. Recursivley process low and high end. For ”small
enough” list, do insertion sort. Θ(NlgN) on average, O(N2)

• Mergesort - divide into 2, recursively sort each half, merge.
Θ(NlgN)

• Shell’s sort - sort distant elements then closer elements.
Every 15, then every 7, every 3, etc. Serves to cut down
inversions over large distances.

• Heapsort - Use heap property to get smallest (or largest)
and add it to the result list. Keep doing this till heap empty
(since heap reheapifies itself after each get())

• Radix - LSD (right to left) or Most Significant Digit (left to
right). Sort on each bit, making sure sort is stable. By the
end this is sorted!

• Quickselection - use quicksort, to narrow down search space
untill you find it. Use index to determine which half to go
into.

• Selection sort - keep selecting X item and moving into result.

• Counting sort - Given an array L of integersm iterate
through L to find the counts of each integer in L. Scan the
counts array to produce an array A of running sums LESS
THAN the current value. Reconstruct the sorted array by
iterating through A and adding keys to S in sorted order.
Running Time: Linear

Game Searching:

• Backtracking - always turn ”left”, if get stuck, go back to
last non-checked point and turn ”right”.

• Minimax - I choose Max value, opponent chooses min value

• Use tree of possibilities.

• alpha-beta pruning - if opponent already has min move for
me, he will not check moves greater than that min.

• Likewise, if I have great move, I won’t check moves worse
than that.

• Since game trees often very large, need to have some sort of
static eval - assign weights to different aspects and sum
them for an evaluation of a position.

Java stuff:

• Parameterization - java does unboxing in the background.

• Ranges (views) - provide subset view of original data

Hashing:

• used for sets - finding stuff in large data sets.

• Hash function - converts item into bucket number. Should
have uniform distribtion.

• Num of buckets = items / load factor.

• Chaining - when there is a collision, have bucket be a linked
list, so you can add it to the end of the list in a bucket.
(same hashcode does not imply equality, but converse is
true.)

• add, find, delete all O(1) time.

Sorting and Searching:

• Sorting - arranges items in some sort of order - for retrieval,
comparison, etc.

• Internal sort - keeps all data in primary memory

• External Sort - break down into batches, use external media
for intermediate storage

• Comparison sort - only sorts on intrinsic order of keys.

• Selection sort - pick next largest (or smallest) and append it
to current result.

1. Relax.
2. You will do GREAT!
3. The ”A” is yours.


