EE 147/247A: MEMS Final Exam Study Guide

Alison Kim

Layouts & Cross Sections

Drawing Conventions

- Draw conductors (POLY0/1/2, METAL)
- Holes in dielectrics, insulators (ANCHOR1/2, P1P2VIA, DMP)
- Etch cuts through sacrificial layers (Ox1/2)

POLYMUMPS

- LEVEL \equiv lithographic level used to pattern a physical layer, may or may not itself be a physical layer (e.g., VIA is not a physical layer)
- Layer \equiv physical layer of material that is deposited
- LEVELS & Layers
 - Nitride: isolates substrate from electrical surface layers
 - POLY0: defines poly-Si 0 features
 - Ox1: first sacrificial oxide layer that provides gap between POLY1 & substrate/nitride
 - ANCHOR1: opens contact between sub, POLY1
 - DIMPLE: generates bumps in under-surface of POLY1 to minimise stiction
 - POLY1: defines poly-Si 1 features
 - Ox2: second sacrificial oxide layer that provides gap between POLY1, 2
 - P1P2VIA: opens contact between POLY1, 2
 - ANCHOR2: opens contact between substrate/nitride, POLY2
 - POLY2: defines poly-Si 2 features
 - METAL: defines location of metal features
- Ex: layers before & after HF etch (yellow, green = OX1, 2)

Layouts & Cross Sections (cont.) SOIMUMPS

- Silicon-on-insulator (SOI) wafer used as starting substrate
 - Si thickness: $10 \mu m$ or $25 \mu m$
 - Oxide thickness: $1\mu m$ (for $10\mu m$ Si) or $2\mu m$ (for $25\mu m$ Si)
 - Substrate thickness: $400 \mu m$
- Silicon layer pattern & etch to oxide layer: can serve as mechanical structure, resistor structure, or electrical routing
- Substrate patterned & etched from "bottom" side to oxide layer: allows for through-hole structures
- Shadow-masked metal process provides metal features (e.g., bond pads, electrical routing)
 - E.g., layers before & after shadow mask bonding + metal deposition

Accelerometers

- $V \propto \frac{dC}{dr}$
- Total capacitance C(x)
 - $C_{finger} = N\epsilon_0 \frac{A}{g}$ (N = # fingers, A = overlapping area, g = distance between fingers) - $x = \frac{ma}{k_{sp}}$ [displacement]
 - $-m = \rho V$ [mass of plate]
 - $-C(x) = C_0(1 + \frac{x}{q})$ [total capacitance]

Parallel Plate Structures

<u>Electrostatics</u>

- $C = \epsilon_0 \frac{A}{g} = \epsilon_0 x \frac{t}{d}$ [capacitance]
- $E_{cap} = \frac{V}{q}$ [electric field between plates]
- $U_{cap} = \frac{1}{2}CV^2$ [potential energy storage]
- $F_{cap} = -\frac{dU}{dq} = \frac{dU_{cap}}{dx} = \frac{d}{dx}(\frac{1}{2}CV^2)$ [electrostatic force]
- E_{fringe} adds $\frac{1}{2}g$ of width to each side of plate

Parallel Plate Structures (cont.)

Gap Closer

- $F_{total} = F_{spring} + F_{elec} = k(x_0 x) \frac{1}{2}\epsilon_0 V^2 \frac{A}{x^2}$
- $V_{pi} = \sqrt{\frac{kx_{pi}^3}{\epsilon_0 A}} = \sqrt{\frac{8}{27} \frac{kx_0^3}{\epsilon_0 A}}$ [pull-in voltage]
- $x_{pi} = \frac{2}{3}x_0$ [pull-in displacement]
- $\Delta x = \frac{1}{3}x_0$ [maximum stable displacement]
- V_{po} : want $F_{elec} = F_{spring}$; use F_{spring} , F_{spring} relations before & after pull-in to determine
- $\frac{1}{2}\epsilon_0 V^2 \frac{A}{(g_0 g_{stop})^2} < kg_{stop}$ [bistability condition]

TNH Comb Drive Resonator

• $k = 8k_0 = 8\frac{Ea^3b}{4L^3}$

•
$$\omega_n = \sqrt{\frac{k}{m}} \Rightarrow \omega_n^2 = \frac{Ea^3b}{4L^3m}$$

- $x_{DC} = \frac{F_0}{k}$ [DC deflection]
- $x_{\omega n} = \frac{F_0}{\omega_n b}$ [resonant deflection]
- $Q = \frac{d}{\mu A_{plate}} \sqrt{m_{plate}k} = \frac{x_0(\omega_n)}{x_0(\omega < \omega_n)} = \frac{x_{\omega_n}}{x_{DC}} = \frac{k}{\omega_n b}$

•
$$b = \frac{\mu A_{plat}}{g}$$

- $\omega^{\frac{2}{3}} \propto \alpha + \delta \alpha$ [line width offset]
- $F_{elec} = 2N_f(\frac{1}{2}\epsilon_0 V^2)\frac{t}{q}$
- $F \propto V^2 = (V_{AC} \sin \omega t + V_{DC})^2$

$$-V(t)^{2} = DC + AC(\omega) + AC(2\omega)$$

$$* DC: \frac{1}{2}V_{AC}^{2} + V_{DC}^{2}$$

$$* \omega : +2V_{AC}V_{DC}\sin\omega t$$

$$* 2\omega : -\frac{1}{2}V_{AC}^{2}\cos 2\omega t$$

$$-F(t) = F_{0}\sin\omega t \Rightarrow x(t) = x_{0}\sin(\omega t + \phi)$$

$$* \omega \ll \omega_{n}: x_{0} = \frac{F_{0}}{k}, \phi = 0 \text{ [spring]}$$

$$* \omega = \omega_{n}: x_{0} = \frac{F_{0}}{b\omega_{n}}, \phi = -\frac{\pi}{2} \text{ [damping]}$$

$$* \omega \gg \omega_{n}: x_{0} = \frac{F_{0}}{m\omega^{2}}, \phi = -\pi \text{ [inertial]}$$

• $I(t) = \frac{d(CV)}{dt} = 2N_f V_{DC} \epsilon_0 a \dot{x}(t)$

Euler-Bernoulli Beam Theory

•
$$F = kx$$

•
$$k_{xx} = \frac{EA}{L}$$

•
$$k_{yy} = k_{zz} = \frac{EI}{4L^3} = \frac{Ea^3b}{4L^3}$$

•
$$k_{z\theta} = \frac{F_0}{\theta} = \frac{Ea^3b}{6L^2}$$

•
$$\epsilon(z) = \frac{\Delta L}{L} = \frac{z}{\mu}$$

•
$$\kappa = \frac{1}{\rho(x)} \approx \frac{d^2y}{dx^2}$$
 (curvature, small deflection)

•
$$M(x) = M_0 + F(L - x) = \frac{EI}{\rho(x)}$$

 $- \frac{1}{\rho(x)} \approx \frac{d^2y}{dx^2} = \frac{M_0 + F(L - x)}{EI}$
 $- EI\frac{dy}{dx} = M_0 x + FLx - \frac{1}{2}Fx^2$
 $- EIy(x) = \frac{1}{2}(M_0 + FL)x^2 - \frac{1}{6}Fx^3$
• $\epsilon_{max}(x, z) = \epsilon(0, \pm \frac{1}{2}a)$

Materials, Stress & Strain Young's moduli for various materials

Material	Young's modulus (GPa)
Poly-Si	150*
Single-crystal Si	130-190
Steel	200
Aluminium	70
SiO_2	70
Diamond	1200
Polymers	≈ 1
Wood, bone	≈ 100

*Roughly. See Crystal Planes section.

Materials, Stress & Strain (cont.)

Material Properties

- $\sigma = \frac{F_x}{A} \left[\frac{N}{m^2} \right]$ (normal stress)
- $\tau = \frac{F_y}{A} \left[\frac{N}{m^2} \right]$ (shear stress)
- $\epsilon = \frac{\Delta L_x}{L} = \frac{x}{L}$ (normal strain)
- $\gamma = \frac{\Delta L_y}{L} = \frac{y}{L} \approx \theta_{deflec}$ (shear strain)
- $\nu = -\frac{\epsilon_y}{\epsilon_x}$ (Poisson ratio)
- $R = \rho \frac{L}{A}$ (resistance)
- $\sigma = E\epsilon$ (linear isotropic materials)

Residual Stress, Stress Gradients, Buckling

- $F_{crit} = K\pi^2 \frac{EI}{L^2} = \frac{K\pi^2 Ea^3b}{12L^2}$ (K = 4, thin film)
 - Will be the largest for a fixed-fixed structure (e.g., clamp-clamp beam)
- $\sigma_0 = \frac{F_{crit}}{A}$ (average residual stress, thin film)

•
$$\rho(x) = \frac{L^2}{2y(x)}$$

- $\sigma(z) = \sigma_1 \frac{z}{L} = \frac{Ea}{2\rho(L)} \frac{z}{L}$ (stress gradient)
 - $-\sigma(z)$: slope of gradient is $\pm \Rightarrow$ contracts/expands
 - $-\sigma_0$: top of beam in T/C region \Rightarrow curl up/down
- Compressive: $\sigma < 0$
 - Substrate shrinks more than film \Rightarrow film wants to shrink
 - Curls down \Rightarrow buckling
- Tensile: $\sigma > 0$
 - Substrate shrinks less than film \Rightarrow film wants to expand
 - Curls up \Rightarrow wants to rip apart since \overrightarrow{F} outward

Allometry, Scaling

Scale every dimension of structure by S

Feature	k	m	b	F	ω_n	Q	Δx_{DC}	Δx_{ω_n}
\propto	$\frac{hw^3}{L^3}$	V	A	$\frac{h}{g}$	$\sqrt{\frac{k}{m}}$	$\frac{k}{b\omega}$	$\frac{F}{k}$	$\frac{F}{b\omega}$
Scaling Factor	S	S^3	S^2	same	S^{-1}	same	S^{-1}	S^{-1}

Allometry, Scaling (cont.)

Scale only Z dimension by S

Feature	k, m, F	b	ω_n	Q	Δx_{DC}	Δx_{ω_n}
\propto	h	b	$\sqrt{\frac{k}{m}}$	k	$\frac{F}{k}$	F
Scaling Factor	S	same	same	S	same	S

Scaling k, m by S; given $L_{beam} \propto S, m_{plate} \propto S^3$

Feature	k_{xx}	k_{yy}	k_{zz}	$k_{\theta z}$	F	M	Δz	$\Delta \theta_z$	dz_{plate}	a_{-x}	a_y
\propto	$\frac{A}{L}$	$\frac{hw^3}{L^3}$	$\frac{h^3w}{L^3}$	$\frac{h^3w}{L^2}$	m	mL	$\frac{FL^3}{I}$	$\frac{FL^2}{I}$	$\theta_z L$	$\frac{A}{m}$	$\frac{I}{hmL}$
Scaling Factor	S	S	S	S	S^3	S^4	S^2	S	S^2	S^{-1}	S^{-1}

Sensors: Thermal, Piezoresistive, Strain

- $R(\epsilon) \approx R_0[1 + \epsilon(1 + 2\nu)]$
- $V_A = A(V_+ V_-)$ (Wheatstone bridge)

$$- V_{+} = \frac{1}{2}V_{x} + \frac{1}{4}G\epsilon V_{x}$$
$$- V_{-} = \frac{1}{2}V_{x}$$

•
$$P = \frac{V^2}{R}$$

- $\frac{\Delta R}{R} = \alpha \Delta T$ (α = temperature coefficient of resistance) [thermal change]
- $\frac{\Delta R}{R} = G\epsilon$ [piezoresistance]

•
$$R_{th} = \frac{L}{kab}$$

• $\Delta T = R_{th}\dot{Q} = \frac{L}{kab}\dot{Q}$ [thermal conductivity]

Crystal Planes

Crystal Planes

- {100}
 - Lowest interface states with SiO2
 - Best for CMOS
 - Most common choice
- {110}
 - Mechanically weakest direction
 - Wafers like to cleave along this direction

- {111}
 - Stiffest direction
 - Slowest etching in KOH, EDP, and other orientation-dependent etches
 - Used for bipolar circuits
- $a_0 \approx 0.543 nm$ [lattice constant of Si at T = 300K]

Figure 1: Crystal planes. (Source: http://nano-physics.pbworks.com/f/1242359145/miller%20index-cubic.png) Orientation Dependence of Young's Modulus

Figure 2: Orientation dependence of Young's modulus of Si. (Source: M. Hopcroft, W. Nix, T. Kenny, "What is the Young's modulus of silicon?", JMEMS V19N2, April 2010.)

MEMS Fabrication CMOS MEMS

- CMOS: Complementary Metal-Oxide-Semiconductor
 - Obtaining mobile electrons in a semiconductor
 - * Illumination: γ absorption
 - * Thermal energy
 - * Impurities (a.k.a. dopants)
 - * Apply \vec{E} -field to generate carriers
 - Types
 - * Thin film dielectric metalisation structures
 - * SOI structures wafer-bonded to CMOS
- Fedder process
 - Post-processing on CMOS to achieve final MEMS product
 - Structural materials: metal, dielectrics
 - Sacrificial materials: dielectrics between structures, silicon beneath structures
 - Etchants: RIE (dielectrics), dry SF₆:O₂ plasma (silicon)
- Invensense/Nasiri process
 - Seal MEMS device on CMOS using eutectic Ge onto Al on CMOS
- Cost: $\approx \$0.05/mm^2!$

Processing

• PR spinning, patterning

Deposition

Mechanism	Substrate Potential	Gases	Conformal / Directional?	Chemical / Kinetic?	Compatibility
Evaporation	N/A	N/A	Directional	Chemical	Al, Cu, Au
Sputtering	GND	Noble (inert) gases	Conformal	Kinetic	?
LPCVD	Wafer at GND	${ m SiH}_4$	Highly conformal	Chemical	$\begin{array}{c} {\rm SiH_4\ can\ be}\\ {\rm amorphous}\\ (< 580^\circ),\\ {\rm polycrystalline}\\ (580-630^\circ C),\\ {\rm single\ crystal}\\ (> 1000^\circ C) \end{array}$
LTO	Wafer at GND	$\begin{array}{c} \mathrm{SiH}_4 + \mathrm{O}_2 \rightarrow \\ \mathrm{SiO}_2, \mathrm{SiH}_4 + \\ \mathrm{O}_2 + \mathrm{PH}_3 \rightarrow \\ \mathrm{PSG} \end{array}$	Poorly conformal	Chemical	$< 450^{\circ}C, \text{Al}$
НТО	Wafer at GND	$\begin{split} & SiH_2Cl_2 + \\ & N_2O \rightarrow SiO_2, \\ & SiH_2Cl_2 + \\ & NH_3 \rightarrow Si_3N_4 \end{split}$	Highly conformal	Chemical	$850^{\circ}C$, Al

Mechanism	Substrate Potential	Gases	Chemical / Kinetic?	Isotropic / Anistropic?	Selectivity
${ m XeF_2}$	N/A	Noble (inert) gases	Chemical	Isotropic	Selective to PR, SiO_2, Al
Hydrofluoric- Nitric-Acetic Acids (e.g., HF, HNOs, CH ₃ COOH)	N/A	N/A	Chemical	Isotropic	Somewhat selective
КОН	N/A	N/A	Chemical	Anisotropic	Selective to Si (fastest on {100}, slowest on {111})
Sputtering	$V_{DC} \neq 0$	Noble (inert) gases	Kinetic	Anisotropic	Non-selective
Plasma	GND	Noble (inert) gases, halogens	Chemical	Isotropic	Selective
RIE	Floating	Noble (inert) gases, halogens	Chemical, somewhat kinetic	Typically anisotropic	Selective
DRIE	Low power RF bias	SF_6 (etch), C_4F_8 (pas- sivation deposition)	Chemical, somewhat kinetic	Isotropic (Si etch, deposition), anisotropic (Teflon etch)	Selective

Stringers

- Form when a conformal film that covers features is etched directionally (e.g., RIE, plasma)
- Remove with sonication

Stiction

Method	\mathbf{Stage}	Reason				
$ \begin{array}{c} \operatorname{CO}_2 \text{ critical point} \\ \operatorname{drying} \end{array} $	Release	Avoids the meniscus problem, which is conducive to stiction				
Dimples	Release,	Increase strain energy of structure, which reduces L_{eff} (i.e.,				
Dimpies	operation	processed length) and device-substrate overlapping surface area				
Dry etch (XeF ₂ ,	Belesse	Cas phase etch \rightarrow no liquid				
vapour HF, etc.)	Herease	Gas phase etch -> no nquid				
Self-assembled	Release.	Permanently make surfaces hydrophobic, which reduces stiction				
monolayers (OTS,	operation					
DDMS, etc.)	-F 201011					

Noise

- Sources
 - Environmental (e.g., 60Hz noise)
 - Shot noise $(\bar{I}^2_{noise}=2qI\Delta f)$
 - Thermal noise (e.g., Brownian motion, Johnson noise, white noise)
- Equipartition
 - Average thermal energy of $\frac{1}{2}k_BT$ for every quadratic energy storage element
 - Capacitor $(\frac{1}{2}CV^2)$, spring $(\frac{1}{2}kx^2)$, kinetic $(\frac{1}{2}mv^2)$, inductor $(\frac{1}{2}LI^2)$
- Fluctuation & Dissipation
 - Noise power in a dissipative element introduces fluctuation in the system: $\bar{P}_N = 4k_BT\Delta f$
 - $-\frac{\bar{P}_N}{\Delta f} = 4k_BT$ [power spectral density]
 - $\bar{V}_N = \sqrt{4k_B T R \Delta f}$ [resistor]
 - $\bar{V}_N = \sqrt{4k_B T b \Delta f}$ [spring-damper]
- $a_{N,eq} = \frac{\bar{V}_{N,out}}{gain}$ [noise-equivalent acceleration]