
The Laplace Transform (Chapter 6) 

Presented by Chris Jeng 

Definition of the Laplace Transform: 

One of the most useful integral transforms for solving linear differential equations is the Laplace 

Transform, which is defined as (see Theorem 6.1.2 for conditions of existence): 

ℒ{𝑓(𝑡)} = 𝐹(𝑠) =  ∫ 𝑒−𝑠𝑡

∞

0

𝑓(𝑡) 𝑑𝑡 

A function 𝑓 is said to be piecewise continuous on an interval 𝛼 ≤ 𝑡 ≤ 𝛽 if the interval can be 

partitioned by a finite number of points 𝛼 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝛽 so that 

1. 𝑓 is continuous on each open subinterval 𝑡𝑖−1 < 𝑡 < 𝑡𝑖. 

2. 𝑓 approaches a finite limit as the endpoints of each subinterval are approached from 

within the subinterval. 

The Laplace transform is particularly useful when dealing with problems that involve piecewise 

continuous functions, as we will see later. 

Theorem 6.1.1: 

(This theorem is essentially a restatement of convergence and divergence conditions of improper 

integrals when compared to each other, as seen in Calculus II. These are important in 

determining what functions the Laplace transform will exist for, because the definition of the 

transform involves an improper integral that needs to converge.) 

Uniqueness of the Laplace Transform: 

The Laplace transform is unique or one-to-one. That is: 

ℒ(𝑓1) =  ℒ(𝑓2)  ⇒  𝑓1 =  𝑓2 

The proof of the uniqueness of the Laplace transform is beyond the scope of our textbook, as 

well as this presentation. The rigorous proof for the Laplace transform is actually a formal proof 

for a transform more general than the Laplace transform, and thus requires theorems from 

complex number theory. However, a more specific, simpler, and less rigorous proof is attached, 

taken from www.mit.edu. 
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Theorem 6.1.2:  

Suppose that the following two statements are true: 

1. 𝑓 is a piecewise continuous on the interval 0 ≤ 𝑡 ≤ 𝐴   ∀𝐴 > 0 

2. |𝑓(𝑡)| ≤ 𝐾𝑒𝑎𝑡 when 𝑡 ≥ 𝑀, where 𝐾, 𝑀 > 0, and  

Then ℒ{𝑓(𝑡)} = 𝐹(𝑠) exists for 𝑠 > 𝑎. 

Example 1: 𝒇(𝒕) = 𝟏 

Find the Laplace of 𝑓(𝑡) = 1, 𝑡 ≥ 0.  

We apply the definition of the Laplace transform: 

ℒ{1} = ∫ 𝑒−𝑠𝑡
∞

0

𝑑𝑡 =  lim
𝐴→∞

∫ 𝑒−𝑠𝑡
A

0

𝑑𝑡 =
𝟏

𝒔
, 𝒔 > 𝟎 

Example 2:𝒇(𝒕) = 𝒆𝒂𝒕 

Find the Laplace of 𝑓(𝑡) = 𝑒𝑎𝑡, 𝑡 ≥ 0.  

Again, we apply the definition: 

ℒ{𝑒𝑎𝑡} = ∫ 𝑒−𝑠𝑡𝑒𝑎𝑡
∞

0

𝑑𝑡 = ∫ 𝑒−(𝑠−𝑎)𝑡 𝑑𝑡 =
𝟏

𝒔 − 𝒂

∞

0

, 𝒔 > 𝒂 

It should be noted that the Laplace Transform is linear, or 

ℒ{𝑐1𝑓1(𝑡) + 𝑐2𝑓2(𝑡)} = 𝑐1ℒ{𝑓1(𝑡)} + 𝑐2ℒ{𝑓2(𝑡)} 

This can be shown by applying the definition of the Laplace Transform to expand the equation 

and using the linear properties of integrals. Therefore, we can see that if Example 2 were 

modified to include a constant 𝑐, the Laplace of such a function will be the result of Example 2 

multiplied by that same 𝑐. We will later use this result in Example 3 to find an inverse transform. 

Other useful Laplace Transforms (derivation not shown) 

ℒ{𝑡𝑛} =
𝑛!

𝑠𝑛+1
,   𝑠 > 0, 𝑛 ∈ ℕ 

ℒ{sin 𝑎𝑡} =
𝑎

𝑠2 + 𝑎2
,   𝑠 > 0 

ℒ{𝑡𝑛𝑒𝑎𝑡} =
𝑛!

(𝑠 − 𝑎)𝑛+1
,   𝑛 ∈ ℕ 

These three transforms are taken from table 6.2.1 from pg 304 of our Boyce DiPrima Differential 

Equations seventh edition textbook. The full table follows: 
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Theorem 6.2.1: 

Suppose that 𝑓 is continuous and 𝑓′ is piecewise continuous on the interval 0 ≤ 𝑡 ≤ 𝐴, and 

∃𝐾, 𝑎, 𝑀 such that |𝑓(𝑡)| ≤ 𝐾𝑒𝑎𝑡 for 𝑡 ≥ 𝑀. Then ℒ{𝑓′(𝑡)} exists for 𝑠 > 𝑎, and 

ℒ{𝑓′(𝑡)} = 𝑠ℒ{𝑓(𝑡)} − 𝑓(0) 

is true. 

Proof of Theorem 6.2.1: 

Consider the integral 

∫ 𝑒−𝑠𝑡𝑓′(𝑡)

A

0

𝑑𝑡 

If 𝑓′ has any discontinuous points in the interval 0 ≤ 𝑡 ≤ 𝐴, 𝑡1, 𝑡1, … , 𝑡𝑛, then we can rewrite this 

integral as 

∫ 𝑒−𝑠𝑡𝑓′(𝑡)

A

0

𝑑𝑡 =  ∫ 𝑒−𝑠𝑡𝑓′(𝑡)

𝑡1

0

+ ∫ 𝑒−𝑠𝑡𝑓′(𝑡)

𝑡2

𝑡1

𝑑𝑡 + ⋯ + ∫ 𝑒−𝑠𝑡𝑓′(𝑡)

𝐴

𝑡𝑛

𝑑𝑡 

because of the linear property of integrals. Then we can integrate each term on the right side of 

the equations via integration by parts 

∫ 𝑒−𝑠𝑡𝑓′(𝑡)
A

0

𝑑𝑡

= 𝑒−𝑠𝑡𝑓(𝑡)|0
𝑡1 + 𝑒−𝑠𝑡𝑓(𝑡)|𝑡1

𝑡2 + ⋯ + 𝑒−𝑠𝑡𝑓(𝑡)|𝑡𝑛

𝐴

+ 𝑠 [∫ 𝑒−𝑠𝑡𝑓(𝑡)
𝑡1

0

+ ∫ 𝑒−𝑠𝑡𝑓(𝑡)
𝑡2

𝑡1

𝑑𝑡 + ⋯ + ∫ 𝑒−𝑠𝑡𝑓(𝑡)
𝐴

𝑡𝑛

𝑑𝑡] 

Since 𝑓 is continuous, we can combine the integrated terms, giving 

∫ 𝑒−𝑠𝑡𝑓′(𝑡)

A

0

𝑑𝑡 = 𝑒−𝑠𝐴𝑓(𝐴) − 𝑓(0) + 𝑠 ∫ 𝑒−𝑠𝑡𝑓(𝑡)

A

0

𝑑𝑡 

Now take the limit as 𝐴 → ∞. For 𝑠 > 𝑎, we have 𝑒−𝑠𝐴𝑓(𝐴) → 0. So for 𝑠 > 𝑎, we have 

 
ℒ{𝑓′(𝑡)} = 𝑠ℒ{𝑓(𝑡)} − 𝑓(0) 

which was what we set out to prove. Note that this has similar implications for ℒ{𝑓′′(𝑡)}, 

ℒ{𝑓′′′(𝑡)}, and so on. In particular, the Laplace transform of 𝑓′′ will be useful, as we will see in 

Example 3. We will prove the following statement of ℒ{𝑓′′(𝑡)}. 

ℒ{𝑓′′(𝑡)} = 𝑠2ℒ{𝑓(𝑡)} − 𝑠𝑓(0) − 𝑓′(0) 
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Proof: 

This can be easily found by directly using the result of Theorem 6.2.1: 

ℒ{𝑓′′(𝑡)} = 𝑠ℒ{𝑓′(𝑡)} − 𝑓′(0) = 𝑠[𝑠ℒ{𝑓(𝑡)} − 𝑓(0)] − 𝑓′(0) = 𝑠2ℒ{𝑓(𝑡)} − 𝑠𝑓(0) − 𝑓′(0) 

We can also conclude a corollary from Theorem 6.2.1: 

Corollary 6.2.2 

Supposed that the functions 𝑓, 𝑓′, … , 𝑓(𝑛−1) are continuous and that 𝑓(𝑛) is piecewise continuous 

on any interval 0 ≤ 𝑡 ≤ 𝐴. Suppose further that there exist constants 𝐾, 𝑎, and 𝑀 such that 

|𝑓(𝑡)| ≤ 𝐾𝑒𝑎𝑡, |𝑓′(𝑡)| ≤ 𝐾𝑒𝑎𝑡, … , |𝑓(𝑛−1)
(𝑡)| ≤ 𝐾𝑒𝑎𝑡 for 𝑡 ≥ 𝑀. Then ℒ{𝑓(𝑛)} exists for 𝑠 > 𝑎 and is 

given by: 

ℒ{𝑓(𝑛)} = 𝑠𝑛ℒ{𝑓(𝑡)} − 𝑠𝑛−1𝑓(0) − ⋯ − 𝑠𝑓(𝑛−2)(0) − 𝑓(𝑛−1)(0) 

The proof of this corollary is obtained by continually applying the result of Theorem 6.2.1 an 𝑛 

number of times. 

Example 3: Application of the Laplace transform to an ODE with constant coefficients 

(Problem #12 on pg 307) 

Use the Laplace transform to solve the given initial value problem: 

𝑦′′ + 3𝑦′ + 2𝑦 = 0;            𝑦(0) = 1,    𝑦′(0) = 0 

First, we take the Laplace transform of the ODE: 

ℒ{𝑦′′ + 3𝑦′ + 2𝑦}

= ℒ{𝑦′′} + ℒ{3𝑦′} + ℒ{2𝑦} = 𝑠2ℒ{𝑦} − 𝑠𝑦(0) − 𝑦′(0) + 3[𝑠ℒ{𝑦} − 𝑦(0)]

+ 2ℒ{𝑦} = 0 

= 𝑠2𝑌(𝑠) − 𝑠𝑦(0) − 𝑦′(0) + 3[𝑠𝑌(𝑠) − 𝑦(0)] + 2𝑌(𝑠) = 0 

We then apply the initial conditions. 

= 𝑠2𝑌(𝑠) − 𝑠 − 0 + 3[𝑠𝑌(𝑠) − 1] + 2𝑌(𝑠) = 0 

= 𝑠2𝑌(𝑠) + 3𝑠𝑌(𝑠) + 2𝑌(𝑠) − 𝑠 − 3 = 0 

Solving for 𝑌(𝑠), the transform of the solution is 

𝑌(𝑠) =
𝑠 + 3

𝑠2 + 3𝑠 + 2
 

Then by partial fractions, we can further simplify this expression 

𝑌(𝑠) =
𝑠 + 3

𝑠2 + 3𝑠 + 2
=

2𝑠 − 4 − 𝑠 + 1

(𝑠 + 1)(𝑠 + 2)
=

2

𝑠 + 1
−

1

𝑠 + 2
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We now must take the inverse Laplace to get our final solution. We use the result of Example 2 

ℒ{𝑒𝑎𝑡} =
1

𝑠 − 𝑎
, 𝑠 > 𝑎 

along with our knowledge that the Laplace transform is linear to get 

𝑦(𝑡) =  ℒ−1{𝑌(𝑠)} = 𝟐𝒆−𝒕 − 𝒆−𝟐𝒕 

Application of Laplace transform to a problem involving variable coefficients? 

In general, attempting to solve a differential equation with even simple polynomial coefficients 

can prove to be ineffective. Consider 

ℒ{𝑓(𝑡) ∙ 𝑔(𝑡)} = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑔(𝑡) 𝑑𝑡

∞

0

 

We can see that evaluating the integral on the right-hand side in general is troublesome, as the 

integrand involves not two, but three functions multiplied by each other. Therefore, no general 

solution can be found. For this reason, using the Laplace transform to solve differential equations 

involving variable coefficients is not recommended. If possible, another method should be used. 

Step Functions: 

The Laplace Transform is best suited for problems involving the unit step function. We have 

already done an example on how to apply the Laplace transform to a simple initial value 

problem. But how is the Laplace transform any more suitable for solving piecewise continuous 

functions than other methods? The key to utilizing the Laplace transform in such problems is the 

unit step function, also known as the Heaviside function, which is defined as: 

𝑢𝑐(𝑡) = {
0,   𝑡 < 𝑐,
1,   𝑡 ≥ 𝑐,

   𝑐 ≥ 0 

Note that the graph of 𝑢𝑐(𝑡) is discontinuous at one point: 𝑡 = 𝑐. The Laplace transform of the 

unit step function is easily calculated: 

ℒ{𝑢𝑐(𝑡)} = ∫ 𝑒−𝑠𝑡𝑢𝑐(𝑡)

∞

0

𝑑𝑡 = ∫ 𝑒−𝑠𝑡 𝑑𝑡

∞

c

=
𝒆−𝒄𝒔

𝒔
, 𝒔 > 𝟎 

It would be useful to consider the related function 𝑔 defined by 

𝑦 = 𝑔(𝑡) = {
0,                 𝑡 < 𝑐
𝑓(𝑡 − 𝑐),   𝑡 ≥ 𝑐

 

which represents a translation of 𝑓 a distance 𝑐 in the positive 𝑡 direction. We can rewrite 𝑔(𝑡) in 

terms of the unit step function: 

𝑔(𝑡) = 𝑢𝑐(𝑡)𝑓(𝑡 − 𝑐) 
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Theorem 6.3.1: 

If 𝐹(𝑠) = ℒ{𝑓(𝑡)} exists for 𝑠 > 𝑎 ≥ 0, and if 𝑐 is a positive constant, then  

ℒ{𝑢𝑐(𝑡)𝑓(𝑡 − 𝑐)} = 𝑒−𝑐𝑠ℒ{𝑓(𝑡)} = 𝑒−𝑐𝑠𝐹(𝑠),    𝑠 > 𝑎 

Conversely, if 𝑓(𝑡) = ℒ−1{𝐹(𝑠)}, then 

𝑢𝑐(𝑡)𝑓(𝑡 − 𝑐) = ℒ−1{𝑒−𝑐𝑠𝐹(𝑠)} 

In other words, Theorem 6.3.1 states that the translation of 𝑓(𝑡) a distance 𝑐 in the positive 𝑡 

direction corresponds to the multiplication of 𝐹(𝑠) by 𝑒−𝑐𝑠. To prove Theorem 6.3.1, we 

compute ℒ{𝑢𝑐(𝑡)𝑓(𝑡 − 𝑐)}: 

ℒ{𝑢𝑐(𝑡)𝑓(𝑡 − 𝑐)} = ∫ 𝑒−𝑠𝑡𝑢𝑐(𝑡)𝑓(𝑡 − 𝑐) 𝑑𝑡

∞

0

= ∫ 𝑒−𝑠𝑡𝑓(𝑡 − 𝑐) 𝑑𝑡

∞

𝑐

 

We now substitute a new integration variable 𝑝 = 𝑡 − 𝑐 

ℒ{𝑢𝑐(𝑡)𝑓(𝑡 − 𝑐)} = ∫ 𝑒−(𝑝+𝑐)𝑠𝑓(𝑝) 𝑑𝑝

∞

0

= 𝑒−𝑐𝑠 ∫ 𝑒−𝑠𝑝𝑓(𝑝) 𝑑𝑝

∞

𝑐

= 𝑒−𝑐𝑠𝐹(𝑠) 

Thus, the we have the first part of Theorem 6.3.1. By taking the inverse transform of both sides, 

we have the second part. 

Example 4: Simple example confirmation of Theorem 6.3.1 

Take 𝑓(𝑡) = 1. We already know that  

ℒ{1} =
1

𝑠
 

and 

ℒ{𝑢𝑐(𝑡)} =
𝑒−𝑐𝑠

𝑠
  

We can see that ℒ{𝑢𝑐(𝑡)} = 𝑒−𝑐𝑠ℒ{1}. 

Example 5: Applying Laplace to a simple piecewise continuous non-homogenous 

differential equation 

Find the solution of the differential equation 

2𝑦′′ + 2𝑦′ + 2𝑦 = 𝑔(𝑡) 

where 𝑔(𝑡) = 𝑢5 − 𝑢20 = {
1,                                                 5 ≤ 𝑡 < 20
0,                         0 ≤ 𝑡 < 5   𝑎𝑛𝑑   𝑡 ≥ 20

 

with the initial conditions 
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𝑦(0) = 0,         𝑦′(0) = 0 

The Laplace transform of the first equation is 

2𝑠2𝑌(𝑠) − 2𝑠𝑦(0) − 2𝑦′(0) + 𝑠𝑌(𝑠) − 𝑦(0) + 2𝑌(𝑠) = ℒ{𝑢5(𝑡)} − ℒ{𝑢20(𝑡)} =
𝑒−5𝑠 − 𝑒−20𝑠

𝑠
 

By substituting the initial values and solving for 𝑌(𝑠), we obtain 

𝑌(𝑠) =
𝑒−5𝑠 − 𝑒−20𝑠

𝑠(2𝑠2 + 𝑠 + 2)
 

To find 𝑦 = 𝜙(𝑡), we rewrite 𝑌(𝑠) as 

𝑌(𝑠) = (𝑒−5𝑠 − 𝑒−20𝑠)𝐻(𝑠) 

Where 

𝐻(𝑠) =
1

𝑠(2𝑠2 + 𝑠 + 2)
 

Then, let ℎ(𝑡) = ℒ−1{𝐻(𝑠)}, and we have 

𝑦 = 𝜙(𝑡) = 𝑢5(𝑡)ℎ(𝑡 − 5) − 𝑢20(𝑡)ℎ(𝑡 − 20) 

To determine ℎ(𝑡), we use the partial fraction expansion of 𝐻(𝑠): 

𝐻(𝑠) =
𝑎

𝑠
+

𝑏𝑠 + 𝑐

2𝑠2 + 𝑠 + 2
 

It can be found that 𝑎 =
1

2
, 𝑏 = −1, and 𝑐 = −

1

2
. Thus we have, 

𝐻(𝑠) =

1
2
𝑠

−
𝑠 +

1
2

2𝑠2 + 𝑠 + 2
=

1
2
𝑠

−
1

2

(𝑠 +
1
4) +

1
4

(𝑠 +
1
4)2 +

15
16

 

Which we can use Table 6.2.1 to obtain: 

ℎ(𝑡) =
1

2
−

1

2
[𝑒−𝑡/4 cos(

√15𝑡

4
) +

√15

15
𝑒−𝑡/4 sin(

√15

4
)] 

For 0 < 𝑡 < 5, the differential equation is 

2𝑦′′ + 𝑦′ + 2𝑦 = 0 

By graphing the solution, we can see that for 0 < 𝑡 < 5, 𝑦 = 0. We can then calculate the initial 

conditions at 𝑡 approaches 5 from below: 

𝑦(5) = 0,            𝑦′(5) = 0 

Once 𝑡 > 5, the differential equation becomes 
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2𝑦′′ + 𝑦′ + 2𝑦 = 1 

whose solution we can obtain by plugging ℎ(𝑡) back into the general form of our inverse 

transform. If we were to graph this solution, we would see that the solution is continuous, even at 

points 𝑡 = 5 and 𝑡 = 20 (see Figure 1). Again, we approximate the value and the derivative of 

the solution at 𝑡 = 20, our next point of discontinuity 

𝑦(20) ≅ 0.50161,            𝑦′(20) ≅ 0.01124 

From here, we have fully found all three parts of our solution. 

At this point, you may be wondering why we don’t simply evaluate the IVP as three separate 

problems. By using the Laplace transform, we can deal with points of discontinuity more 

elegantly and conveniently than if we used other methods. 

FIGURE 1 Graph of the solution to Example 5. 

Further Implications 

In conclusion, the Laplace transform is especially useful when dealing with problems that 

involve piecewise discontinuous functions. Furthermore, the Laplace transform is useful for 

dealing with phenomena of an impulsive nature, for example, voltages or forces that act with a 

large magnitude over very short time intervals. For further reading on the Laplace transform, we 

should familiarize ourselves with topics such as the impulse function or the convolution 

integral, which helps identify a Laplace transform 𝐻(𝑠) as the product of two other transforms 

𝐹(𝑠) and 𝐺(𝑠). 


