CH 6: INNER-PRODUCT SPACES

norm: length of a vector, given by $|| \mathbf{x} || = \sqrt{x_1^2 + \dots + x_n^2}$ *note: norm is *not* linear on \mathbb{R}^n

dot product: for $x, y \in \mathbb{R}^n$, $x \cdot y = x_1y_1 + \dots + x_ny_n$

inner product on *V*: a function that takes each ordered pair (u, v) of elements of V to a number $\langle u, v \rangle \in F$ and obeys the following:

1. positivity: $\langle \boldsymbol{v}, \boldsymbol{v} \rangle \ge 0 \forall \boldsymbol{v} \in V$ 2. definiteness: $\langle \boldsymbol{v}, \boldsymbol{v} \rangle = 0 \iff T$

2. definiteness: $\langle v, v \rangle = 0 \iff v = 0$

3. additivity in first slot: $\langle \boldsymbol{u} + \boldsymbol{v}, \boldsymbol{w} \rangle = \langle \boldsymbol{u}, \boldsymbol{w} \rangle + \langle \boldsymbol{v}, \boldsymbol{w} \rangle \forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$ 4. homogeneity in first slot: $\langle \boldsymbol{a}\boldsymbol{v}, \boldsymbol{w} \rangle = a \langle \boldsymbol{v}, \boldsymbol{w} \rangle \forall a \in F; \ \boldsymbol{v}, \boldsymbol{w} \in V$

4. nonlogeneity in first slot: $(uv, w) = a(v, w) \forall a \in F; v, w \in S$. conjugate symmetry: $(v, w) = \langle \overline{w, v} \rangle \forall v, w \in V$

*note: for $V = \mathbb{R}$, property 5 is simply $\langle v, w \rangle = \langle w, v \rangle$

the inner product gives notions of:

1. length: || *v* ||

2. angle θ between two vectors: $\cos \theta = \frac{\langle x | y \rangle}{\|x\| \|y\|}$

inner product space: a vector space V with an inner product on V

norm (revisited): for fin dim (|) V, can define as $|| x || = \sqrt{\langle v | v \rangle}$

NOTATION: from now on, V represents fin dim inner product space

orthogonal: describes two vectors $\boldsymbol{u}, \boldsymbol{v} \in V$ for which $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 0$

orthogonal projection of u onto $span(v): \frac{\langle u|v \rangle}{\|v\|^2} \cdot v$

pythagorean theorem: if $u, v \in V$ orthogonal in fin dim $\langle | \rangle$ V, then $|| u + v ||^2 = || u ||^2 + || v ||^2$

cauchy-schwarz inequality: if $u, v \in V$, then $|\langle u | v \rangle| \le ||u|| + ||v||$ *note: $\Rightarrow au = v \text{ or } av = u \text{ for some } a \in F$

triangle inequality: if $u, v \in V$, then $|| u + v || \le || u || + || v ||$ *note: = $\Leftrightarrow au = v \text{ or } av = u \text{ for some } a \ge 0 \in F$

parallelogram inequality: if $u, v \in V$, then $|| u + v ||^2 + || u - v ||^2 = 2(|| u ||^2 + || v ||^2)$

orthonormal: describes a list of vectors if the vectors in it are pairwise orthogonal and each vector has norm 1

prop 6.15: if (e_1, \dots, e_m) is an orthonormal list of vectors in V, then $|| a_1 e_1 + \dots + a_m e_m ||^2 = |a_1|^2 + \dots + |a_m|^2 \forall a_1, \dots, a_m \in F$

cor 6.16: every orthonormal list of vectors is linearly independent

orthonormal basis: an orthonormal list of vectors in V that is also a basis of V

thm 6.17: suppose $(e_1, ..., e_n)$ is an orthonormal basis of V. then: 1. $v = \langle v | e_1 \rangle e_1 + \dots + \langle v | e_n \rangle e_n$ 2. $||v||^2 = |\langle v | e_1 \rangle|^2 + \dots + |\langle v | e_n \rangle|^2$

gram-schmidt procedure: if $(v_1, ..., v_m)$ is a linearly independent list of vectors in V, then \exists orthonormal list $(e_1, ..., e_m)$ of vectors in V such that $span(v_1, ..., v_{j-1}) = span(e_1, ..., e_j)$ for j=1,...,m

cor 6.24: every fin dim inner product space has an orthonormal basis

cor 6.25: every orthonormal list of vectors in V can be extended to an orthonormal basis of V $% \left(V_{i}^{A}\right) =0$

cor 6.27: suppose $T \in \mathcal{L}(V)$, if T has upper-triangular matrix with respect to some basis of V, then T has an upper-triangular matrix with respect to some orthonormal basis of V

cor 6.28: if V fin dim complex and $T \in \mathcal{L}(V)$, then T has uppertriangular matrix with respect to some orthonormal basis of V

orthogonal complement: the set of all vectors that are orthogonal to every vector in $U \subset V$, denoted by $U^{\perp} = \{ v \in V : \langle v | u \rangle = 0 \forall u \in U \}$

thm 6.29: if $U \subset V$ a subspace, then $V = U \oplus U^{\perp}$

cor 6.33: if $U \subset V$ a subspace, then $U = (U^{\perp})^{\perp}$

for $U \subset V$ a subspace, $V = U \oplus U^{\perp} \Longrightarrow$ each $v \in V$ can be written uniquely as $v = u \in U + w \in U^{\perp}$. here, u is the **orthogonal projection** of V onto U, denoted by P_U , such that $P_Uv = u$, and it obeys the following: 1. $range(P_U) = U$ 2. $null(P_U) = U^{\perp}$ 3. $v - P_Uv \in U^{\perp} \forall v \in V$ 4. $P_U^2 = P_U$

5. $\| P_U \boldsymbol{v} \| \le \| \boldsymbol{v} \| \forall \boldsymbol{v} \in V$

prop 6.36: suppose $U \subset V$ a subspace and $v \in V$, then $|| v - P_U v || \le || v - u || \forall u \in U$

linear functional: a linear map from V to the scalars

thm 6.45: suppose φ a linear functional on V, then $\exists ! v \in V$ such that $\varphi(u) = \langle u | v \rangle \forall u \in V$

NOTATION: W is fin dim nonzero inner product space over F

adjoint: for $T \in \mathcal{L}(V, W)$, the function T* from W to V such that $\langle T \boldsymbol{\nu} | \boldsymbol{w} \rangle = \langle \boldsymbol{\nu} | T^* \boldsymbol{w} \rangle \forall \boldsymbol{\nu} \in V$

the function $T \to T^*$ obeys the following $\forall S, T \in \mathcal{L}(V, W)$: 1. additivity: $(S + T)^* = S^* + T^*$ 2. conjugate homogeneity: $(aT)^* = \overline{a}T^* \forall a \in F$ 3. adjoint of adjoint: $(T^*)^* = T$ 4. identity: $I^* = I$ 5. products: $(ST)^* = T^*S^*$

prop 6.46: suppose $T \in \mathcal{L}(V, W)$, then 1. $null(T^*) = (rangeT)^{\perp}$ 2. $range(T^*) = (nullT)^{\perp}$ 3. $null(T) = (rangeT^*)^{\perp}$ 4. $range(T) = (nullT^*)^{\perp}$

to obtain the nxm **conjugate transpose** of an mxn matrix, interchange the rows and columns of the latter and then take the complex conjugate of each entry.

prop 6.47: suppose $T \in \mathcal{L}(V, W)$, if $(e_1, ..., e_n)$ is an orthonormal basis of V and $(f_1, ..., f_m)$ is an orthonormal basis of W, then $\mathcal{M}(T^*, (f_1, ..., f_m), (e_1, ..., e_n))$ is the conjugate transpose of $\mathcal{M}(T, (e_1, ..., e_n), (f_1, ..., f_m))$

CH 7: OPERATORS ON INNER-PRODUCT **SPACES**

self-adjoint: describes an operator T if $T = T^*$

prop 7.1: every eigenvalue of a self-adjoint operator is real

prop 7.2: if V complex inner product and T operator on V such that $\langle T\boldsymbol{v} | \boldsymbol{v} \rangle = 0 \ \forall \ \boldsymbol{v} \in V$, then T = 0

cor 7.3: suppose V complex inner product and let $T \in \mathcal{L}(V)$, then T self-adjoint on $V \Leftrightarrow \langle T \boldsymbol{v} | \boldsymbol{v} \rangle \in \mathbb{R} \forall \boldsymbol{v} \in V$

prop 7.4: if T self-adjoint on V such that $\langle T \boldsymbol{v} | \boldsymbol{v} \rangle = 0 \forall \boldsymbol{v} \in V$, then T = 0

normal: describes an operator that commutes with its adjoint, T*T=TT*

prop 7.6: an operator $T \in \mathcal{L}(V)$ is normal $\Leftrightarrow ||Tv|| = ||T^*v|| \forall v \in V$

cor 7.7: suppose $T \in \mathcal{L}(V)$ normal, if $v \in V$ an eigenvector of T with eigenvalue $\lambda \in F$, then \boldsymbol{v} also an eigenvector of T* with eigenvalue $\overline{\lambda}$

cor 7.8: if $T \in \mathcal{L}(V)$ normal, then eigenvectors of T corresponding to distinct eigenvalues are orthogonal

complex spectral thm: suppose V complex inner product and $T \in \mathcal{L}(V)$, then V has an orthonormal basis consisting of eigenvectors of $T \Leftrightarrow T$ normal

lemma 7.11: suppose $T \in \mathcal{L}(V)$ self-adjoint, if $\alpha, \beta \in \mathbb{R}$ are such that $\alpha^2 < 4\beta$, then $T^2 + \alpha T + \beta I$ invertible

lemma 7.12: suppose $T \in \mathcal{L}(V)$ self-adjoint, then T has an eigenvalue

real spectral thm: suppose V real inner product and $T \in \mathcal{L}(V)$, then V has an orthonormal basis consisting of eigenvectors of $T \Leftrightarrow T$ selfadjoint

cor 7.14: suppose $T \in \mathcal{L}(V)$ self-adjoint and let $\lambda_1, ..., \lambda_m$ denote the distinct eigenvalues of T, then $V = null(T - \lambda_1 I) \oplus ... \oplus null(T - \lambda_1 I)$ $\lambda_m I$) and each vector in each $null(T - \lambda_1 I)$ is orthogonal to all vectors in the other subspaces of this decomposition

lemma 7.15: suppose V two-dim real inner product and $T \in \mathcal{L}(V)$, then the following are equivalent:

1. T normal but not self-adjoint

2. matrix of T with respect to every orthonormal basis of V has form $\begin{bmatrix} -b \\ a \end{bmatrix}$ with $b \neq 0$

3. matrix of T with respect to some orthonormal basis of V has form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ with b > 0

prop 7.18: suppose $T \in \mathcal{L}(V)$ normal and $U \subset V$ a subspace invariant under T, then:

- 1. U^{\perp} is invariant under T
- 2. U is invariant under T*
- 3. $(T|_{II})^* = (T^*)|_U$
- 4. $T|_U$ is a normal operator on U
- 5. $T|_{U^{\perp}}$ is a normal operator on U^{\perp}

block diagonal matrix: a square matrix of form $\begin{bmatrix} A_1 & 0 \\ \ddots & 0 \\ 0 & \ddots \end{bmatrix}$

where A_1, \ldots, A_m are square matrices lying along diagonal and all other entries equal 0

thm 7.25: suppose V real inner product and $T \in \mathcal{L}(V)$, then T normal $\Leftrightarrow \exists$ orthonormal basis of V with respect to which T has a block diagonal matrix where each block is either a 1x1 matrix or a 2x2 matrix of form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ with b > 0

CH 8: OPERATORS ON COMPLEX VECTOR **SPACES**

suppose $T \in \mathcal{L}(V)$ and $\lambda \in F$ an eigenvalue of T, then $v \in V$ a generalised eigenvector of T corresponding to λ if $(T - \lambda I)^{j} v = 0$ for some $j \in \mathbb{Z}^+$

prop 8.5: if $T \in \mathcal{L}(V)$ and $m \ge 0 \in \mathbb{Z}^+$ such that $null T^m = null T^{m+1}$, then $nullT^0 \subset nullT^1 \subset \cdots \subset nullT^m = nullT^{m+1} = nullT^{m+2} = \cdots$

prop 8.6: if $T \in \mathcal{L}(V)$, then $nullT^{dimV} = nullT^{dimV+1} = nullT^{dimV+2} = \cdots$

cor 8.7: suppose $T \in \mathcal{L}(V)$ and $\lambda \in F$ an eigenvalue of T, then the set of generalised eigenvectors of T corresponding to eigenvalue λ , denoted by \tilde{E}_{λ} , equals $null(T - \lambda I)^{dimV}$

nilpotent: describes an operator for which some power of it equals 0

cor 8.8: suppose $N \in \mathcal{L}(V)$ nilpotent, then $N^{dimV} = 0$

prop 8.9: if $T \in \mathcal{L}(V)$, then $rangeT^{dimV} = rangeT^{dimV+1} =$ $rangeT^{dimV+2} = \cdots$

thm 8.10: let $T \in \mathcal{L}(V)$ and $\lambda \in F$, then for every basis of V with respect to which T has an upper-triangular matrix, λ appears on the diagonal of the matrix of T precisely dim $[null(T - \lambda I)^{dimV}]$ times

multiplicity: dimension of \tilde{E}_{λ} for particular eigenvalue λ , which equals dim $[null(T - \lambda I)^{dimV}]$

prop 8.18: if V complex and $T \in \mathcal{L}(V)$, then the sum of the multiplicities of all the eigenvalues of T equals dimV

suppose V complex and $T \in \mathcal{L}(V)$. let $\lambda_1, ..., \lambda_m$ denote the distinct eigenvalues of T, and d_i denote the multiplicity of λ_i as an eigenvalue. then the characteristic polynomial X_T of T is the polynomial $X_T = (z - \lambda_1)^{d_1} \dots (z - \lambda_m)^{d_m}$, which has degree dimV.

cayley-hamilton theorem: suppose V complex and $T \in \mathcal{L}(V)$ and let q denote X_T , then q(T) = 0

prop 8.22: if $T \in \mathcal{L}(V)$ and $p \in P(F)$, then nullp(T) is invariant under T

thm 8.23: suppose V complex and $T \in \mathcal{L}(V)$, let $\lambda_1, ..., \lambda_m$ denote the distinct eigenvalues of T and let $\tilde{E}_{\lambda_1},\ldots,\tilde{E}_{\lambda_m}$ be the corresponding subspaces of generalised eigenvectors, then

1. $V = \tilde{E}_{\lambda_1} \oplus ... \oplus \tilde{E}_{\lambda_m}$ 2. each \tilde{E}_{λ_i} is invariant under T 3. each $(T - \lambda_j I)|_{E_{\lambda_j}}$ is nilpotent

CH 8: OPERATORS ON COMPLEX VECTOR **SPACES** (CONT.)

prop 8.18 restated: $dimV = dim\tilde{E}_{\lambda_1} + \cdots + dim\tilde{E}_{\lambda_m}$

cor 8.25: suppose V complex and $T \in \mathcal{L}(V)$, then \exists basis of V consisting of generalised eigenvectors of T

lemma 8.26: suppose N a nilpotent operator on V, then \exists basis of V with respect to which the matrix of N has form $\begin{bmatrix} 0 & * \\ 0 & 0 \end{bmatrix}$ where all entries on and below diagonal are 0

thm 8.28: suppose V complex and $T \in \mathcal{L}(V)$, let $\lambda_1, ..., \lambda_m$ denote the distinct eigenvalues of T, then \exists basis of V with respect to which T

has a block diagonal matrix of form $\mathcal{M} = \begin{bmatrix} A_1 & 0 \\ 0 & A_m \end{bmatrix}$, where each A_j is an upper-triangular matrix of form $A_j = \begin{bmatrix} \lambda_1 & * \\ 0 & \lambda_j \end{bmatrix}$

minimal polynomial: the monic polynomial $p \in P(F)$ of smallest degree such that p(T) = 0

thm 8.34: let $T \in \mathcal{L}(V)$ and $q \in P(F)$, then $q(T) = 0 \Leftrightarrow$ minimal polynomial of T divides q

thm 8.36: let $T \in \mathcal{L}(V)$, then the roots of the minimal polynomial of T are precisely the eigenvalues of T

block diagonal matrix \mathcal{M} comprising jordan blocks is in jordan canonical form. then a basis of V is called a jordan basis for T if with respect to this basis, T has a block diagonal matrix in jordan form.

thm 8.47: suppose V complex, if $T \in \mathcal{L}(V)$, then \exists basis of V that is a jordan basis for T

a kxk matrix is a **jordan block** if it is of form $A = \begin{bmatrix} \ddots & \\ \ddots & \\ & \ddots & \\ & & 1 \end{bmatrix}$. a