
MATH 110 Review Sheet    Alison Kim 

CH 6: INNER-PRODUCT SPACES 
 

norm: length of a vector, given by ∥ 𝒙 ∥  =    𝑥!! +⋯+ 𝑥!! 
*note: norm is not linear on ℝ! 

 
dot product: for 𝒙,𝒚 ∈ ℝ!, 𝒙 ∙ 𝒚 = 𝑥!𝑦! +⋯+ 𝑥!𝑦! 
 
inner product on V: a function that takes each ordered pair 𝑢, 𝑣  of 
elements of V to a number 𝒖,𝒗 ∈ 𝐹 and obeys the following: 
1. positivity: 𝒗,𝒗 ≥ 0  ∀  𝒗 ∈ 𝑉 
2. definiteness: 𝒗,𝒗 = 0  ⟺ 𝒗 = 0 
3. additivity in first slot: 𝒖 + 𝒗,𝒘 = 𝒖,𝒘 + 𝒗,𝒘   ∀  𝒖,𝒗,𝒘 ∈ 𝑉 
4. homogeneity in first slot: 𝑎𝒗,𝒘 = 𝑎 𝒗,𝒘   ∀  𝑎 ∈ 𝐹;   𝒗,𝒘 ∈ 𝑉 
5. conjugate symmetry: 𝒗,𝒘 = 𝒘,𝒗   ∀  𝒗,𝒘 ∈ 𝑉 

*note: for 𝑉 = ℝ, property 5 is simply 𝒗,𝒘 = 𝒘,𝒗  
 

the inner product gives notions of: 
1. length: ∥ 𝒗 ∥ 
2. angle 𝜃 between two vectors: cos 𝜃 = ! !

∥𝒙∥∥𝒚∥
 

 
inner product space: a vector space V with an inner product on V 
 

norm (revisited): for fin dim |  V, can define as ∥ 𝒙 ∥  =    𝒗 𝒗  
 
NOTATION: from now on, V represents fin dim inner product space 
 
orthogonal: describes two vectors 𝒖,𝒗 ∈ 𝑉  for which 𝒖,𝒗 = 0 
 

orthogonal projection of 𝒖  𝒐𝒏𝒕𝒐  𝒔𝒑𝒂𝒏 𝒗 :   𝒖 𝒗
∥𝒗∥𝟐

∙ 𝒗 

 
pythagorean theorem: if 𝒖,𝒗 ∈ 𝑉 orthogonal in fin dim |  V, then 
∥ 𝒖 + 𝒗 ∥!  =  ∥ 𝒖 ∥!+∥ 𝒗 ∥! 
 
cauchy-schwarz inequality: if 𝒖,𝒗 ∈ 𝑉, then 𝒖 𝒗 ≤  ∥ 𝒖 ∥   +∥ 𝒗 ∥ 

*note: =  ⟺ 𝑎𝒖 = 𝒗  𝑜𝑟  𝑎𝒗 = 𝒖  𝑓𝑜𝑟  𝑠𝑜𝑚𝑒  𝑎 ∈ 𝐹 
 
triangle inequality: if 𝒖,𝒗 ∈ 𝑉, then ∥ 𝒖 + 𝒗 ∥  ≤  ∥ 𝒖 ∥   +  ∥ 𝒗 ∥ 

*note: =  ⟺ 𝑎𝒖 = 𝒗  𝑜𝑟  𝑎𝒗 = 𝒖  𝑓𝑜𝑟  𝑠𝑜𝑚𝑒  𝑎 ≥ 0 ∈ 𝐹 
 
parallelogram inequality: if 𝒖,𝒗 ∈ 𝑉, then ∥ 𝒖 + 𝒗 ∥!  +  ∥ 𝒖 − 𝒗 ∥!  =
  2(∥ 𝒖 ∥!  +  ∥ 𝒗 ∥!) 
 
orthonormal: describes a list of vectors if the vectors in it are pair-
wise orthogonal and each vector has norm 1 
 
prop 6.15: if 𝑒!,…    , 𝑒!  is an orthonormal list of vectors in V, then 
∥ 𝑎!𝒆𝟏 +⋯+ 𝑎!𝒆𝒎    ∥!  =    𝑎! ! +⋯+    𝑎! !  ∀  𝑎!,… , 𝑎! ∈ 𝐹 
 
cor 6.16: every orthonormal list of vectors is linearly independent 
 
orthonormal basis: an orthonormal list of vectors in V that is also a 
basis of V 
 
thm 6.17: suppose 𝒆𝟏,…    , 𝒆𝒏  is an orthonormal basis of V. then: 
1. 𝒗 = 𝒗 𝒆𝟏 𝒆𝟏 +⋯+ 𝒗 𝒆𝒏 𝒆𝒏 
2. ∥ 𝒗 ∥!= 𝒗 𝒆𝟏 ! +⋯+ 𝒗 𝒆𝒏 ! 
 
gram-schmidt procedure: if 𝒗𝟏,… ,𝒗𝒎  is a linearly independent list 
of vectors in V, then ∃ orthonormal list 𝒆𝟏,…    , 𝒆𝒎  of vectors in V 
such that 𝑠𝑝𝑎𝑛 𝒗𝟏,… ,𝒗𝒋!𝟏 = 𝑠𝑝𝑎𝑛 𝒆𝟏,…    , 𝒆𝒋  for j=1,…,m 
 
cor 6.24: every fin dim inner product space has an orthonormal basis 

 
 
cor 6.25: every orthonormal list of vectors in V can be extended to an 
orthonormal basis of V 
 
cor 6.27: suppose 𝑇 ∈ ℒ(𝑉), if T has upper-triangular matrix with 
respect to some basis of V, then T has an upper-triangular matrix 
with respect to some orthonormal basis of V 
 
cor 6.28: if V fin dim complex and 𝑇 ∈ ℒ(𝑉), then T has upper-
triangular matrix with respect to some orthonormal basis of V 
 
orthogonal complement: the set of all vectors that are orthogonal to 
every vector in 𝑈 ⊂ 𝑉, denoted by 𝑈! = 𝒗 ∈ 𝑉:   𝒗 𝒖 = 0  ∀  𝒖 ∈ 𝑈  
 
thm 6.29: if 𝑈 ⊂ 𝑉 a subspace, then 𝑉 = 𝑈 𝑈! 
 
cor 6.33: if 𝑈 ⊂ 𝑉 a subspace, then 𝑈 = (𝑈!)! 
 
for 𝑈 ⊂ 𝑉 a subspace, 𝑉 = 𝑈 𝑈!   ⟹ each 𝒗 ∈ 𝑉 can be written 
uniquely as 𝒗 = 𝒖 ∈ 𝑈   + 𝒘 ∈ 𝑈!. here, 𝒖 is the orthogonal 
projection of V onto U, denoted by 𝑃!, such that 𝑃!𝒗 = 𝒖, and it 
obeys the following: 
1. 𝑟𝑎𝑛𝑔𝑒 𝑃! = 𝑈 
2. 𝑛𝑢𝑙𝑙 𝑃! = 𝑈! 
3. 𝑣 − 𝑃!𝑣   ∈   𝑈!  ∀  𝒗 ∈ 𝑉 
4. 𝑃!! = 𝑃! 
5. ∥ 𝑃!𝒗 ∥  ≤  ∥ 𝒗 ∥   ∀  𝒗 ∈ 𝑉 
 
prop 6.36: suppose 𝑈 ⊂ 𝑉 a subspace and 𝒗 ∈ 𝑉, then ∥ 𝒗 − 𝑃!𝒗 ∥  ≤
  ∥ 𝒗 − 𝒖 ∥   ∀  𝒖 ∈ 𝑈 
 
linear functional: a linear map from V to the scalars 
 
thm 6.45: suppose 𝜑 a linear functional on V, then ∃! 𝒗 ∈ 𝑉 such that 
𝜑 𝒖 = 𝒖 𝒗   ∀  𝒖 ∈ 𝑉 
 
NOTATION: W is fin dim nonzero inner product space over F 
 
adjoint: for 𝑇 ∈ ℒ(𝑉,𝑊), the function T* from W to V such that 
𝑇𝒗 𝒘 = 𝒗 𝑇∗𝒘  ∀  𝒗 ∈ 𝑉 

 
the function 𝑇 → 𝑇∗ obeys the following ∀  𝑆,𝑇 ∈ ℒ(𝑉,𝑊): 
1. additivity: (𝑆 + 𝑇)∗ = 𝑆∗ + 𝑇∗ 
2. conjugate homogeneity: (𝑎𝑇)∗ = 𝑎𝑇∗  ∀  𝑎 ∈ 𝐹 
3. adjoint of adjoint: (𝑇∗)∗ = 𝑇 
4. identity: 𝐼∗ = 𝐼 
5. products: (𝑆𝑇)∗ = 𝑇∗𝑆∗ 
 
prop 6.46: suppose 𝑇 ∈ ℒ(𝑉,𝑊), then 
1. 𝑛𝑢𝑙𝑙 𝑇∗ = (𝑟𝑎𝑛𝑔𝑒𝑇)! 
2. 𝑟𝑎𝑛𝑔𝑒 𝑇∗ = (𝑛𝑢𝑙𝑙𝑇)! 
3. 𝑛𝑢𝑙𝑙 𝑇 = (𝑟𝑎𝑛𝑔𝑒𝑇∗)! 
4. 𝑟𝑎𝑛𝑔𝑒 𝑇 = (𝑛𝑢𝑙𝑙𝑇∗)! 
 
to obtain the nxm conjugate transpose of an mxn matrix, 
interchange the rows and columns of the latter and then take the 
complex conjugate of each entry. 
 
prop 6.47: suppose 𝑇 ∈ ℒ(𝑉,𝑊), if 𝒆𝟏,…    , 𝒆𝒏  is an orthonormal 
basis of V and 𝒇𝟏,…    , 𝒇𝒎  is an orthonormal basis of W, then 
ℳ 𝑇∗, 𝒇𝟏,…    , 𝒇𝒎 , 𝒆𝟏,…    , 𝒆𝒏  is the conjugate transpose of 
ℳ 𝑇, 𝒆𝟏,…    , 𝒆𝒏 , 𝒇𝟏,…    , 𝒇𝒎  
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CH 7: OPERATORS ON INNER-PRODUCT 
SPACES 
 
self-adjoint: describes an operator T if 𝑇 = 𝑇∗ 
 
prop 7.1: every eigenvalue of a self-adjoint operator is real 
 
prop 7.2: if V complex inner product and T operator on V such that 
𝑇𝒗 𝒗 = 0  ∀  𝒗 ∈ 𝑉, then 𝑇 = 0 

 
cor 7.3: suppose V complex inner product and let 𝑇 ∈ ℒ(𝑉), then T 
self-adjoint on V ⇔    𝑇𝒗 𝒗 ∈ ℝ  ∀  𝒗 ∈ 𝑉 
 
prop 7.4: if T self-adjoint on V such that 𝑇𝒗 𝒗 = 0  ∀  𝒗 ∈ 𝑉, then 
𝑇 = 0 
 
normal: describes an operator that commutes with its adjoint, 
T*T=TT* 
 
prop 7.6: an operator 𝑇 ∈ ℒ(𝑉) is normal ⇔ 𝑇𝒗 = 𝑇∗𝒗   ∀  𝒗 ∈ 𝑉 
 
cor 7.7: suppose 𝑇 ∈ ℒ 𝑉  normal, if 𝒗 ∈ 𝑉 an eigenvector of T with 
eigenvalue 𝜆 ∈ 𝐹, then 𝒗 also an eigenvector of T* with eigenvalue 𝜆 
 
cor 7.8: if 𝑇 ∈ ℒ 𝑉  normal, then eigenvectors of T corresponding to 
distinct eigenvalues are orthogonal 
 
complex spectral thm: suppose V complex inner product and 
𝑇 ∈ ℒ 𝑉 , then V has an orthonormal basis consisting of eigenvectors 
of 𝑇 ⇔ 𝑇 normal 
 
lemma 7.11: suppose 𝑇 ∈ ℒ 𝑉  self-adjoint, if 𝛼,𝛽 ∈ ℝ are such that 
𝛼! < 4𝛽, then 𝑇! + 𝛼𝑇 + 𝛽𝐼 invertible 
 
lemma 7.12: suppose 𝑇 ∈ ℒ 𝑉  self-adjoint, then T has an eigenvalue 
 
real spectral thm: suppose V real inner product and 𝑇 ∈ ℒ 𝑉 , then V 
has an orthonormal basis consisting of eigenvectors of 𝑇 ⇔ 𝑇 self-
adjoint 
 
cor 7.14: suppose 𝑇 ∈ ℒ 𝑉  self-adjoint and let 𝜆!,… , 𝜆! denote the 
distinct eigenvalues of T, then 𝑉 = 𝑛𝑢𝑙𝑙 𝑇 − 𝜆!𝐼 ⊕ …⊕ 𝑛𝑢𝑙𝑙 𝑇 −
𝜆!𝐼  and each vector in each 𝑛𝑢𝑙𝑙 𝑇 − 𝜆!𝐼  is orthogonal to all 
vectors in the other subspaces of this decomposition 
 
lemma 7.15: suppose V two-dim real inner product and 𝑇 ∈ ℒ 𝑉 , 
then the following are equivalent: 
1. T normal but not self-adjoint 
2. matrix of T with respect to every orthonormal basis of V has form 
𝑎 −𝑏
𝑏 𝑎  with 𝑏 ≠ 0 

3. matrix of T with respect to some orthonormal basis of V has form 
𝑎 −𝑏
𝑏 𝑎  with 𝑏 > 0 

 
prop 7.18: suppose 𝑇 ∈ ℒ 𝑉  normal and 𝑈 ⊂ 𝑉 a subspace invariant 
under T, then: 
1. 𝑈! is invariant under T 
2. U is invariant under T* 
3. (𝑇|!)∗ = (𝑇∗)|! 
4. 𝑇|! is a normal operator on U 
5. 𝑇|!!  is a normal operator on 𝑈! 
 

block diagonal matrix: a square matrix of form 
𝐴!    0
   ⋱   
0    𝐴!

 

where 𝐴!,… ,𝐴! are square matrices lying along diagonal and all 
other entries equal 0 
 
thm 7.25: suppose V real inner product and 𝑇 ∈ ℒ(𝑉), then T normal 
⇔   ∃ orthonormal basis of V with respect to which T has a block 
diagonal matrix where each block is either a 1x1 matrix or a 2x2 

matrix of form 𝑎 −𝑏
𝑏 𝑎  with 𝑏 > 0 

 

CH 8: OPERATORS ON COMPLEX VECTOR 
SPACES 
 
suppose 𝑇 ∈ ℒ 𝑉  and 𝜆 ∈ 𝐹 an eigenvalue of T, then 𝒗 ∈ 𝑉 a 
generalised eigenvector of T corresponding to 𝜆 if (𝑇 − 𝜆𝐼)!𝒗 = 0 for 
some 𝑗 ∈ ℤ! 
 
prop 8.5: if 𝑇 ∈ ℒ 𝑉  and 𝑚 ≥ 0 ∈ ℤ! such that 𝑛𝑢𝑙𝑙𝑇! = 𝑛𝑢𝑙𝑙𝑇!!!, 
then 𝑛𝑢𝑙𝑙𝑇! ⊂ 𝑛𝑢𝑙𝑙𝑇! ⊂ ⋯ ⊂ 𝑛𝑢𝑙𝑙𝑇! = 𝑛𝑢𝑙𝑙𝑇!!! = 𝑛𝑢𝑙𝑙𝑇!!! = ⋯ 
 
prop 8.6: if 𝑇 ∈ ℒ 𝑉 , then 
𝑛𝑢𝑙𝑙𝑇!"#$ = 𝑛𝑢𝑙𝑙𝑇!"#$!! = 𝑛𝑢𝑙𝑙𝑇!"#$!! = ⋯ 
 
cor 8.7: suppose 𝑇 ∈ ℒ 𝑉  and 𝜆 ∈ 𝐹 an eigenvalue of T, then the set 
of generalised eigenvectors of T corresponding to eigenvalue 𝜆, 
denoted by 𝐸!, equals 𝑛𝑢𝑙𝑙(𝑇 − 𝜆𝐼)!"#$ 
 
nilpotent: describes an operator for which some power of it equals 0 
 
cor 8.8: suppose 𝑁 ∈ ℒ 𝑉  nilpotent, then 𝑁!"#$ = 0 
 
prop 8.9: if 𝑇 ∈ ℒ 𝑉 , then 𝑟𝑎𝑛𝑔𝑒𝑇!"#$ = 𝑟𝑎𝑛𝑔𝑒𝑇!"#$!! =
𝑟𝑎𝑛𝑔𝑒𝑇!"#$!! = ⋯ 
 
thm 8.10: let 𝑇 ∈ ℒ 𝑉  and 𝜆 ∈ 𝐹, then for every basis of V with 
respect to which T has an upper-triangular matrix, 𝜆 appears on the 
diagonal of the matrix of T precisely dim  [𝑛𝑢𝑙𝑙 𝑇 − 𝜆𝐼 !"#$] times 
 
multiplicity: dimension of 𝐸! for particular eigenvalue 𝜆, which 
equals dim  [𝑛𝑢𝑙𝑙 𝑇 − 𝜆𝐼 !"#$] 
 
prop 8.18: if V complex and 𝑇 ∈ ℒ 𝑉 , then the sum of the 
multiplicities of all the eigenvalues of T equals dimV 
 
suppose V complex and 𝑇 ∈ ℒ 𝑉 . let 𝜆!,… , 𝜆! denote the distinct 
eigenvalues of T, and 𝑑! denote the multiplicity of  𝜆! as an 
eigenvalue. then the characteristic polynomial Χ! of T is the 
polynomial Χ! = 𝑧 − 𝜆! !! … (𝑧 − 𝜆!)!! , which has degree dimV. 
 
cayley-hamilton theorem: suppose V complex and 𝑇 ∈ ℒ 𝑉  and let 
q denote Χ!, then 𝑞 𝑇 = 0 
 
prop 8.22: if 𝑇 ∈ ℒ 𝑉  and 𝑝 ∈ 𝑃(𝐹), then 𝑛𝑢𝑙𝑙𝑝(𝑇) is invariant 
under T 
 
thm 8.23: suppose V complex and 𝑇 ∈ ℒ 𝑉 , let 𝜆!,… , 𝜆! denote the 
distinct eigenvalues of T and let 𝐸!! ,… ,𝐸!!  be the corresponding 
subspaces of generalised eigenvectors, then 
1. 𝑉 =   𝐸!! ⊕ …⊕ 𝐸!!  
2. each 𝐸!!  is invariant under T 

3. each (𝑇 − 𝜆!𝐼)|!!!   is nilpotent 
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CH 8: OPERATORS ON COMPLEX VECTOR 
SPACES (CONT.) 
 
prop 8.18 restated: 𝑑𝑖𝑚𝑉 = 𝑑𝑖𝑚𝐸!! +⋯+ 𝑑𝑖𝑚𝐸!!  
 
cor 8.25: suppose V complex and 𝑇 ∈ ℒ 𝑉 , then ∃ basis of V 
consisting of generalised eigenvectors of T 
 
lemma 8.26: suppose N a nilpotent operator on V, then ∃ basis of V 

with respect to which the matrix of N has form 
0    ∗
   ⋱   
0    0

 where all 

entries on and below diagonal are 0 
 
thm 8.28: suppose V complex and 𝑇 ∈ ℒ 𝑉 , let 𝜆!,… , 𝜆! denote the 
distinct eigenvalues of T, then  ∃ basis of V with respect to which T 

has a block diagonal matrix of form ℳ =
𝐴!    0
   ⋱   
0    𝐴!

, where each 

𝐴! is an upper-triangular matrix of form 𝐴! =
𝜆!    ∗
   ⋱   
0    𝜆!

 

 
 
minimal polynomial: the monic polynomial 𝑝 ∈ 𝑃(𝐹) of smallest 
degree such that 𝑝 𝑇 = 0 
 
thm 8.34: let 𝑇 ∈ ℒ 𝑉  and 𝑞 ∈ 𝑃(𝐹), then 𝑞 𝑇 = 0⇔ minimal 
polynomial of T divides q 
 
thm 8.36: let 𝑇 ∈ ℒ 𝑉 , then the roots of the minimal polynomial of 
T are precisely the eigenvalues of T 
 

a kxk matrix is a jordan block if it is of form 𝐴 =

𝜆 1   
        
        

      0
        
⋱              

        
0      

⋱      
      1
      𝜆

. a 

block diagonal matrix ℳ comprising jordan blocks is in jordan 
canonical form. then a basis of V is called a jordan basis for T if with 
respect to this basis, T has a block diagonal matrix in jordan form. 
 
thm 8.47: suppose V complex, if 𝑇 ∈ ℒ 𝑉 , then ∃ basis of V that is a 
jordan basis for T 


