MATH 110 Review Sheet

CH 6: INNER-PRODUCT SPACES

norm: length of a vector, givenby || x | = /xZ + - + x2
*note: norm is not linear on R"

dot product: for x,y € R™, x -y = x,y; + -+ X,V

inner product on V: a function that takes each ordered pair (u, v) of
elements of V to a number (u, v) € F and obeys the following:
1. positivity: (v,v) = 0Vv eV
2. definiteness: (v, v) =0 v =0
3. additivity in first slot: (u + v,w) = (u,w) + (v, w)Vu,v,w eV
4. homogeneity in first slot: (av,w) = a{v,w)Va € F; v,w eV
5. conjugate symmetry: (v, w) = (W, v) Vo,w €V
*note: for V = R, property 5 is simply (v, w) = (w, v)

the inner product gives notions of:
1. length: || v ||
2. angle 0 between two vectors: cos 0 = %

inner product space: a vector space V with an inner product on V

norm (revisited): for fin dim (|) V, can define as || x | = +/(v|v)
NOTATION: from now on, V represents fin dim inner product space

orthogonal: describes two vectors u, v € V for which (u,v) = 0

(ulv) |

orthogonal projection of u onto span(v): e

pythagorean theorem: if u, v € V orthogonal in fin dim (|) V, then
lu+viZ=lul*+lvI?

cauchy-schwarz inequality: if u,v € V, then [{ulv)| <llull +l v
*note: =< au =vorav =u forsomea € F

triangle inequality: if u,v € V, thenlu+v I <lul +1l vl
*note: =< au=vorav=uforsomea=0€F

parallelogram inequality: if u,v € V, thenlu+v 1?2 +llu—v|?=
20l u >+ 1l v 1%

orthonormal: describes a list of vectors if the vectors in it are pair-
wise orthogonal and each vector has norm 1

prop 6.15: if (eq, ... , e,,) is an orthonormal list of vectors in V, then
lae+-+ape, 1?’=la;|>?+-+ |la,|?Vay,..,a, EF

cor 6.16: every orthonormal list of vectors is linearly independent

orthonormal basis: an orthonormal list of vectors in V that is also a
basis of V

thm 6.17: suppose (ey, ... , €,) is an orthonormal basis of V. then:
1.v=(v|ey)e; + -+ (vley)e,
2.1 v I17= [vle)* + - + vley) |

gram-schmidt procedure: if (vq, ..., v,,,) is a linearly independent list
of vectors in V, then 3 orthonormal list (ey, ... , e,,) of vectors in V
such that span(vy, ..., vj_1) = span(ey, ... , e;) forj=1,...,m

cor 6.24: every fin dim inner product space has an orthonormal basis
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cor 6.25: every orthonormal list of vectors in V can be extended to an
orthonormal basis of V

cor 6.27: suppose T € L(V), if T has upper-triangular matrix with
respect to some basis of V, then T has an upper-triangular matrix
with respect to some orthonormal basis of V

cor 6.28: if V fin dim complex and T € L(V), then T has upper-
triangular matrix with respect to some orthonormal basis of V

orthogonal complement: the set of all vectors that are orthogonal to
every vectorin U € V, denoted by Ut = {vw € V: (v|u) =0V u € U}

thm 6.29: if U c V a subspace, thenV = U@ U+
cor 6.33: if U c V a subspace, then U = (U+)*

for U c V a subspace, V = U ® U' = each v € V can be written
uniquely asv =u € U +w € U*'. here, u is the orthogonal
projection of V onto U, denoted by Py, such that P,v = u, and it
obeys the following:

1. range(Py) = U

2. null(Py) = U+

3.v—Pyv € UtVVEV

4.PZ=P,

S0 Ppvili<livi VveV

prop 6.36: suppose U c V asubspaceand v € V, then || v — Pyv | <
lv—ull YVueU

linear functional: a linear map from V to the scalars

thm 6.45: suppose ¢ a linear functional on V, then 3! v € V such that
o) =(ulvy)vueVv

NOTATION: W is fin dim nonzero inner product space over F

adjoint: for T € L(V, W), the function T* from W to V such that
(Tvlw) = (v|IT*W)VVEV

the function T — T* obeys the following V S, T € L(V,W):
. additivity: (S+T)* =S*"+T"

. conjugate homogeneity: (aT)* =aT*Va€F

. adjoint of adjoint: (T*)* =T

.identity: [* =1

. products: (ST)* = T*S*

D W=

prop 6.46: suppose T € L(V,W), then
1. null(T*) = (rangeT)*
2. range(T*) = (nullT)*
3. null(T) = (rangeT*)*
4. range(T) = (nullT*)*

to obtain the nxm conjugate transpose of an mxn matrix,
interchange the rows and columns of the latter and then take the
complex conjugate of each entry.

prop 6.47: suppose T € L(V, W), if (e, ... , e,) is an orthonormal
basis of V and (f, ... , fm) is an orthonormal basis of W, then
M(T*, (f1, - Fm), (€4, ... ,€,)) is the conjugate transpose of

M(T, (el; ey en)l (fl’ 'fM))
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CH 7: OPERATORS ON INNER-PRODUCT
SPACES

self-adjoint: describes an operator Tif T = T*
prop 7.1: every eigenvalue of a self-adjoint operator is real

prop 7.2: if V complex inner product and T operator on V such that
(Tvlv)=0VvEeV,thenT =0

cor 7.3: suppose V complex inner product and let T € L(V), then T
self-adjointon V& (Tv|lv) e RVv eV

prop 7.4: if T self-adjoint on V such that (Tv|v) = 0V v € V, then
T=0

normal: describes an operator that commutes with its adjoint,
T*T=TT*

prop 7.6: an operator T € L(V) isnormal & ||Tv|| = ||T*v||Vv €V

cor 7.7: suppose T € L(V) normal, if v € V an eigenvector of T with
eigenvalue 1 € F, then v also an eigenvector of T* with eigenvalue 1

cor 7.8: if T € L(V) normal, then eigenvectors of T corresponding to
distinct eigenvalues are orthogonal

complex spectral thm: suppose V complex inner product and
T € L(V), then V has an orthonormal basis consisting of eigenvectors
of T & T normal

lemma 7.11: suppose T € L(V) self-adjoint, if @, 8 € R are such that
a? < 4f, then T? + aT + BI invertible

lemma 7.12: suppose T € L(V) self-adjoint, then T has an eigenvalue

real spectral thm: suppose V real inner product and T € L(V), then V
has an orthonormal basis consisting of eigenvectors of T & T self-
adjoint

cor 7.14: suppose T € L(V) self-adjoint and let 44, ..., 4,,, denote the
distinct eigenvalues of T, then V = null(T — A,1) & ... P null(T —
AnI) and each vector in each null(T — A,1) is orthogonal to all
vectors in the other subspaces of this decomposition

lemma 7.15: suppose V two-dim real inner product and T € L(V),

then the following are equivalent:

1. T normal but not self-adjoint

2. matrix of T with respect to every orthonormal basis of V has form
[Z _ab] with b # 0

3. matrix of T with respect to some orthonormal basis of V has form
a —-b]_.

[ b a ] with b > 0

prop 7.18: suppose T € L(V) normal and U < V a subspace invariant
under T, then:

1. U* is invariant under T

2. U is invariant under T*

3. (Tl = Ty

4. T|y is a normal operator on U

5. T| v is a normal operator on Ut
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A, 0
block diagonal matrix: a square matrix of form [
0 A,

where 4, ..., A,, are square matrices lying along diagonal and all
other entries equal 0

thm 7.25: suppose V real inner product and T € L(V), then T normal
& 3 orthonormal basis of V with respect to which T has a block
diagonal matrix where each block is either a 1x1 matrix or a 2x2

matrix of form [Z _ab] with b > 0

CH 8: OPERATORS ON COMPLEX VECTOR
SPACES

suppose T € L(V) and 1 € F an eigenvalue of T, thenv € V a
generalised eigenvector of T corresponding to A if (T — AI)/v = 0 for
some j € Z*

prop 8.5: if T € L(V) and m = 0 € Z* such that nullT™ = nullT™"?,
then nullT® c nullT! c - € nullT™ = nullT™! = nullT™*? = ...

prop 8.6: if T € L(V), then
nulleimV — nu”TdimV+1 — nulleimV+2 — ...

cor 8.7: suppose T € L(V) and A € F an eigenvalue of T, then the set
of generalised eigenvectors of T corresponding to eigenvalue A,
denoted by E;, equals null(T — AI)%™

nilpotent: describes an operator for which some power of it equals 0
cor 8.8: suppose N € L(V) nilpotent, then N¥™ = (

prop 8.9: if T € L(V), then rangeT*™ = rangeT %™+t =
rangerimV+2 — ...

thm 8.10: let T € L(V) and A € F, then for every basis of V with
respect to which T has an upper-triangular matrix, A appears on the
diagonal of the matrix of T precisely dim [null(T — AI)%™"] times

multiplicity: dimension of E, for particular eigenvalue A, which
equals dim [null(T — AI)%™"]

prop 8.18: if V complex and T € L(V), then the sum of the
multiplicities of all the eigenvalues of T equals dimV

suppose V complex and T € L(V). let A4, ..., 4,,, denote the distinct
eigenvalues of T, and d; denote the multiplicity of 4; as an
eigenvalue. then the characteristic polynomial X of T is the
polynomial X; = (z — 1,)% ... (z — A,,)%™, which has degree dimV.

cayley-hamilton theorem: suppose V complex and T € L(V) and let
q denote X, then q(T) =0

prop 8.22:if T € L(V) and p € P(F), then nullp(T) is invariant
under T

thm 8.23: suppose V complex and T € L(V), let A4, ..., A,, denote the
distinct eigenvalues of T and let E Ayr e E 1, D€ the corresponding
subspaces of generalised eigenvectors, then

LV=FE&.0F,

2. each Ey is invariant under T

3. each (T — A}'I)'Eaj is nilpotent
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CH 8: OPERATORS ON COMPLEX VECTOR
SPACES (CONT.)

prop 8.18 restated: dimV = dimE, + -+ dimEj

cor 8.25: suppose V complex and T € L(V), then 3 basis of V
consisting of generalised eigenvectors of T

lemma 8.26: suppose N a nilpotent operator on V, then 3 basis of V
0 *

with respect to which the matrix of N has form where all

0 0
entries on and below diagonal are 0

thm 8.28: suppose V complex and T € L(V), let 4, ..., 4,,, denote the
distinct eigenvalues of T, then 3 basis of V with respect to which T
Ay 0

has a block diagonal matrix of form M = , Where each

0 A

A *
0 /1-]

)

Aj is an upper-triangular matrix of form A4; =

minimal polynomial: the monic polynomial p € P(F) of smallest
degree such that p(T) = 0

thm 8.34: let T € L(V) and q € P(F), then q(T) = 0 & minimal
polynomial of T divides q

thm 8.36: let T € L(V), then the roots of the minimal polynomial of
T are precisely the eigenvalues of T

A1 0

a kxk matrix is a jordan block if it is of form A = .a
1
0 A

block diagonal matrix M’ comprising jordan blocks is in jordan
canonical form. then a basis of V is called a jordan basis for T if with
respect to this basis, T has a block diagonal matrix in jordan form.

thm 8.47: suppose V complex, if T € L(V), then 3 basis of V thatis a
jordan basis for T
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