Math 54 Final Exam Review
Chapter 1: Linear Equations in Linear Algebra (Sections 1,2,3,4,5,7,8,9)
Section 1: Systems of Linear Equations

Two systems of equations are equivalent if they have the same solution set
System of equations is consistent if it has one or infinitely many solutions; it is
inconsistent if it has no solutions
mxn matrix: m rows, n columns
Elementary row operations (they are reversible):

0 Replacement: add to a row a multiple of another row

o0 Interchange: interchange two rows

0 Scaling: multiply all entries in a row by a nonzero constant
Two matrices are row equivalent if there exists a sequence of elementary row operations
that transforms one matrix into the other; they have the same solution set
2 fundamental questions: existence and uniqueness

Section 2: Row Reduction and Echelon Forms

Leading entry: leftmost nonzero entry in a nonzero row
Row echelon form of a matrix:

o All nonzero rows are above any rows of zeros

o0 Each leading entry of arow is in a column to the right of the leading entry of the

row above it

o0 All entries in a column below the leading entry are zero
Reduced row echelon form of a matrix:

o0 Leading entry in each nonzero row is 1

0 Each leading 1 is the only nonzero entry in its column
Each matrix can be reduced down to multiple different matrices in echelon form, but is
only row equivalent to one matrix in reduced row echelon form.
A pivot position is a location that corresponds to a leading 1 in RREF of the matrix. A
pivot column is the column of A that contains a pivot position.
A linear system is consistent iff its augmented matrix contains no rows [0 0 ... 0 | b] with
a nonzero b (that corresponds to O=b which is inconsistent)

Section 3: Vector Equations

Column vector (or just vector): a matrix with only one column

Two vectors are equal if their corresponding entries are equal

For vectors y, v, and scalars ¢,, —if y = c;vq + - + c,v, thenyisalinear
combination of vectors v with weights ¢

Span {v,...v,} is the collection of all vectors that can be written as c;v{ + - + ¢, v,
Isbin Span {v,...v,,}? This is the same thing as asking if x;v4 + -+ x,v, = b hasa
solution



Section 4: The Matrix Equation Ax=b
If A is an mxn matrix with columns a;...a,, and x is in R", then
X1
Ax =[aq...a,] [ : ] =x104 + -+ xpa,
xn

Ax=Db has a solution (existence) iff b is a linear combination of the columns of A
Properties of Ax:

o0 A(u+v)=A(u)+A(V)

o A(cu)=cA(u)

Section 5: Solution Sets of Linear Systems

A system is homogeneous if it can be written as Ax = 0; there is always a zero solution
(a trivial solution)

The homogeneous equation Ax = 0 has a nontrivial solution iff the equation has at least
one free variable

Implicit description: the original equations. Explicit description: parametric vector
equation

If Ax = Db has a solution, then the solution set is obtained by translating the solution set of
Ax =0, using any particular solution p of Ax = b for the translation

Section 7: Linear Independence

A set of vectors {v4...v,} is linearly independent if the vector equation x;v4 + -+
x, v, = 0 has only the trivial solution; otherwise, the set is linearly dependent

The columns of a matrix A are linearly independent iff the equation Ax = 0 has only the
trivial solution

A set of two vectors is linearly dependent if one of the vectors is a multiple of the other;
linearly independent otherwise

A set of two or more vectors is linearly dependent iff at least one of the vectors in the set
is a linear combination of the others

If a set contains more vectors than there are entries in each vector, then the set is linearly
independent

If a set contains the zero vector, then it is linearly dependent

Section 8: Introduction to Linear Transformations

A transformation (or function or mapping) T from R™ to R™ is a rule that assigns for
each vector x in R™ a vector T(x) in R™
R™ is the domain of T, R™ is the codomain of T
Set of all images T(x) is the range of T
Matrix transformation: T(x) is computed as Ax
A transformation T is linear if:
o T(u+v)=T(u)+T(v) forall u, vinthe domain of T
0 T(cu) =cT(u) for all scalars ¢ and all u in the domain of T



If T is a linear transformation, then T(0) = O (maps the zero vector to the zero vector)
Section 9: The Matrix of a Linear Transformation

For linear transformation T: R™ — R™ there exists a unique mxn matrix A such that
T(x)=Ax for all x in R™; A is called the standard matrix for a linear transformation
A=[T(eq1) .. T(ey)]
A mapping T: R"® - R™ isonto R™ if each b in R™ is an image of at least one x in R™ —
there exists at least one solution to T(x)=b; Ax=b is consistent (no zero rows)
A mapping T: R® = R™ is one-to-one R™ if each b in R™ is an image of at most one x
in R™ — T(x)=b has a unique solution or no solution; T(x)=0 has only the trivial solution
For T: R™ — R™, with A being the standard matrix of the transformation:

o T maps R™ onto R™ iff the columns of A span R™ (pivot in every row)

o T is one-to-one iff the columns of A are linearly independent (pivot in every

column)

Chapter 2: Matrix Algebra (sections 1,2,3,8,9)
Section 1: Matrix Operations

The diagonal entries of an mxn matrix A = [a;;] are a,4, a,,, ass, etc. and they form the
main diagonal of A
A diagonal matrix is an nxn square matrix whose nondiagonal entries are zero
An mxn matrix all of whose entries are zero is the zero matrix
Two matrices are equal if they have the same size and their corresponding columns are
equal
Properties of matrix addition:
o A+B=B+A
(A+B)+C=A+(B+C)
A+0=A
rA+B)=rA+rB
(r+s)A=rA+sA
r(sA) = (rs)A
If A'is an mxn matrix and B is an nxp matrix, AB = A[b; b; ... b,] = [Aby Ab, ... Ab,]
Each column of AB is a linear combination of the columns of A using weights from the
corresponding column of B (for entry ij of the matrix AB, multiply row i of A by column
jof B)
AB has same number of rows as A and same number of columns as B
Properties of matrix multiplication (for A mxn matrix)
o A(BC)=(AB)C
A(B+C)=AB + AC
(B+C)A=BA + CA
r(AB) = (rA)B = A(rB)
I,A=A=Al,

O O0OO0OO0O0

O 00O



e Given an mxn matrix A, the transpose of A is the nxm matrix A” whose columns are
formed by the corresponding rows of A
e Properties of transpose:
o (ANHT=A
o (A+B)T =AT+BT
o Foranyscalarr, (rA)T =rAT
o (AB)T =BTAT
e A and B commute with each other if AB = BA (not true in general cases)

Section 2: The Inverse of a Matrix

e Annxn matrix A is invertible if there exists an nxn matrix C for which AC=I and CA=I
e Asingular matrix is not invertible; a nonsingular matrix is invertible.

e Fora2x2 matrix A = [CCL Z VAT = @ [_dc _ab]; if det(A) = 0, the matrix is not

invertible
e If Ais an invertible nxn matrix, then for each b in R™ the equation Ax = b has the unique
solution x = A71b
e Properties of the matrix inverse:
o (A H1tl=4
o (AB)"'=B"14"1
o (AT)—l — (A—l)T
e The product of two invertible matrices is invertible
e Annxn matrix A is invertible iff it is row equivalent to I,
e To find the inverse of A, write [A | I,] & row reduce to [ I,, | A™1]

Section 3: Characteristics of Invertible Matrices

e Invertible matrix theorem: for any given square nxn matrix A, the following are either all
true or all false
o Aisinvertible
A is row equivalent to the nxn identity matrix
A has n pivot positions
The equation Ax=0 has only the trivial solution
The columns of A form a linearly independent set
The linear transformation x - AX is one-to-one
The equation Ax = b has at least one solution for each b in R™
The columns of A span R"
The linear transformation x - Ax maps R™ onto R"
There is a square nxn matrix C such that CA=I
There is a square nxn matrix D such that AD = |
o AT isan invertible matrix
e Alinear transformation T: R™® — R™ is invertible if there exists a function S: R* - R"
such that S(T(x)) = x and T(S(x)) = x for all x in R™ (S is the inverse of T; notation: T~1)
e T:R"™—> R"isinvertible iff its standard matrix A is invertible; T~1(x) = A~ 1x

OO0OO0OO0O0O0OO0OO0OO0OO0O



Section 8: Subspaces of R

A subspace of R™ in any set H has 3 properties:

0 The zero vector is in H

o ForeachuandvinH,u+visinH (vector addition)

o Foreach uin H and each scalar c, the vector cu is in H
Span {v;...v,} is the subspace spanned by v;...v,
The zero subspace is the set consisting of only the zero vector
The column space of a matrix A is the set Col A of all linear combinations of the
columns of A; it’s the space of all vectors b for which Ax = b is solvable
The column space of an mxn matrix is a subspace of R™
The null space of a matrix A is the set Nul A of all solutions of the homogeneous
equation Ax=0
The null space of an mxn matrix A is a subspace of R"
A basis for a subspace H of R" is a linearly independent set in H that spans H
The set {e;...e, } is the standard basis for R"
To find basis for column space: row reduce matrix to find its pivot columns; the set of the
pivot columns of the ORIGINAL matrix (before row reduction) is the column space
To find basis for null space: find solution of Ax = 0; the set of vectors in parametric
vector form of the solution is the basis for null space
(not in chapter): row space of A is the set Row A of all linear combinations of the rows
of A
(not in chapter): to find the basis for row space, row reduce the matrix to reduced row
echelon form. The nonzero rows will form the basis for Row A
(not in chapter): left null space of A is the null space of AT
(not in chapter): to find the basis for left null space, first write [ A | I,, ] then row reduce
so that it becomes [ rref(A) | M ]; every row in M corresponding to a zero row in rref(A)
is a basis vector for LNul A
(not in chapter): left null space is orthogonal to column space; row space is orthogonal to
null space

Section 9: Dimension and Rank

Suppose that § = {b1 bp} is a basis for subspace H. For each x in H, the coordinates of
X relative to H are the weights ¢, ... ¢, such that X = ¢; by + -+ + ¢, b, and the vector in

€1

RP [x]p = [ : ] is the p-coordinate vector of x
C
14

The dimension of a nonzero subspace H (dim H) is the number of vectors in basis of H.
The dimension of the zero subspace is defined as zero.

The rank of a matrix A is the dimension of the column space of A (so, the number of
pivot points)

If a matrix A has n columns, rank A +dim Nul A=n

If H is a p-dimensional subspace of R", any linearly independent set of exactly p
elements in H is a basis of H



Invertible matrix theorem cont. (for a square nxn matrix A these are all true or all false)
0 Columns of A form a basis of R®

ColA=R"

dimCol A=n

rank A =n

Nul A = {0}

dimNulA=0

O O0O0O0O0

Chapter 3: Determinants (Sections 1,2,3)
Section 1: Introduction to Determinants

The determinant of an nxn matrix A=[a;;] is the sum of n terms of the form +a; ;det4;
sodet A=Y7_,(—1)"*ay; detAy;
Given A=[a;;], the (i, j)-cofactor of A C;; = (—1)**/ det 4;;
The determinant of an nxn matrix can be computed by a cofactor expansion across any
row or down any column:
0o detA= ailCil + aizCiz + -+ ainCin
0o detA= alelj + aszzj + -+ Clnanj
+ - +
- 4+ —Jetc.
+ - +
If A is a diagonal matrix, then det A is the product of the entries on its main diagonal

it

cofactor signs:

Section 2: Properties of Determinants

For square matrix A:

o If amultiple of one row of A is added to another row to produce B, then det B =

det A

o If two rows of A are interchanged to produce B, then det B = - det A

o If one row of A is multiplied by k to produce B, then det B = k det A
For matrix A and its corresponding matrix U in rref; r is the number of times rows have
been swapped places:

T , , ] . .
o det A= {( 1)"(product of pivots in U) : when A is invertible

0: when A is not invertible
A square matrix A is invertible only if det A # 0

If A is an nxn matrix, det A”= det A
If A and B are nxn matrices, det AB = (det A)(det B)

_ 1
detA ! =
detA




Section 3: Carmer’s Rule, Volume, and Linear Transformations

Cramer’s rule: let A be an invertible nxn matrix. For any b in R™, the unique solution x

of Ax=Db has entries given by

detA4;(b) .
o xi=#L= 1,2..n
detA

0 Here, A;(b) means that the ith column of the matrix A is replaced by the vector b
The adjugate (or classical adjoint) of A (adj A) is the matrix of cofactors

Ci1 - Cln]
Cnl Cnn 1
If Ais an invertible nxn matrix, A~ = — adj(4)

detA
For a 2x2 matrix A, the area of the parallelogram determined by the columns of A is

|detA|

For a 3x3 matrix A, the volume of the parallelepiped determined by the columns of A is
|detA\|

Let T: R? —» R? be the linear transformation determined by a 2x2 matrix A. If Sis a
parallelogram in R?, then {area of T(S)}= |detA| {area of S}

Let T: R® - R3 be the linear transformation determined by a 3x3 matrix A. If Sis a
parallelepiped in R3, then {volume of T(S)}= |detA| {volume of S}

Chapter 4: Vector Spaces (Sections 1,2,3,4,5,6,7)
Section 1: Vector Spaces and Subspaces

A vector space is a nonempty set V of objects (vectors) on which addition and
multiplication by scalars is defined. Following axioms hold true for all vector spaces,
with u, v, and w in V and scalars c, d
O u+visinV
u+tv=v+u
U+tv)+w=u+(v+w)
There is a zero vector 0 in V such thatu+0=0
For each u in V, there is a vector —u in V such that u + (-u) =0
cuisinV
c(u+v)=cu+cv
(c+d)u=cu+du
c(du) = (cd)u
o lu=u
A subspace of a vector space Vis a subset H of V that has three properties:
0 The zero vector of Visin H
o0 Hisclosed under vector addition (for each u and v in H, u+v is also in H)
0 His closed under scalar multiplication (for each u in H, every cu is in H)
A subspace H of V is itself a vector space
Every vector space is a subspace (of itself and possibly other larger space)
The set consisting of only the zero vector in a vector space V is called the zero subspace

O O0O0O0O0O0O0O0



If v; ...v, are in a vector space V, then Span{v, ... v, } is a subspace of V
A spanning set for subspace H is v, ... v, such that H= Span{v, ... v, }

Section 2: Null Spaces, Column Spaces, and Linear Transformations

The null space of an mxn matrix A is the set of all solutions of Ax=0 and is a subspace
of R"
The column space of an mxn matrix A is the set of all linear combinations of the
columns of A; it is a subspace of R™
The columns space of an mxn matrix A is all of R™ iff Ax=b has a solution for every b
A linear transformation T from a vector space V into a vector space W is a rule that
assigns to each vector x in V a unique vector T(x) in W such that

o T(u+tv)=T(u) + T(V)

o T(cu)=cT(u)

Section 3: Linearly Independent Sets; Bases

An indexed set {v, ... v, } of two or more vectors (none the zero vector) is linearly
dependent iff some v; is a linear combination of the preceding vectors v; ... v;_4
Let H be a subspace of a vector space V. An indexed set of vectors § = {b; ...b,} in V'is
a basis for H if

o pisalinearly independent set

0 The subspace spanned by g coincides with H
The standard basis for P,, is {1,t,t2...}
LetS={v; ..v,} beasetinVandH = Span {v; ...v,}

o If one of the vectors in S is a linear combination of other vectors, then the set

formed by S after removing that vector still spans H
o If H#{0}, some subset of S is a basis for H

Section 4: Coordinate Systems

Let B = {b; ... b, } be a basis for a vector space V. Each vector x in V can be expressed as
X = Clbl + i + Cnbn
The f-coordinates of x are the weights c; ...c,
€1
[x]g = [ : ] is the $-coordinate vector of x
Cn

Mapping x = [x]z is the coordinate mapping determined by f

Let Pz = [b; ... by], Pg a change of coordinates matrix. X = ¢;by + --- + ¢y by, is the
same thing as saying x = Pg[x]p

Let B be a basis for a vector space V. Then the coordinate mapping X = [x] is a one-to-
one linear transformation onto R"



Section 5: The Dimension of a Vector Space

If a vector space V has a basis § = {b; ... b, } then any set in V containing more than n
vectors must be linearly dependent

If a vector space V has a basis of n vectors, every basis of V will contain n vectors

V is finite-dimensional if it is spanned by a finite set; V is infinite-dimensional if it is
spanned by an infinite set

If H is a subspace of a finite-dimensional vector space V, H is finite-dimensional and any
linearly independent set in H can be expanded to a basis for H. Also, dim H <dim V

Let V be a p-dimensional subspace. Any linearly independent set of exactly p vectors in
V is automatically a basis for V

Section 6: Rank

The row space of A is the set of all linear combinations of the row vectors
If A and B are row equivalent, their row spaces are the same. If B is in echelon form, the
nonzero rows of B form a basis for the row space of B and of A

Section 7: Change of Basis

Let 8 = {b; ... b} and C= {c; ... c,} be bases for a vector space V. Then there is a unique
nxn matrix Pc.g such that

0 [x]¢c = Pcplxlp

o The columns of P;_z are the C-coordinate vectors of the vectors in basis f:

PC(—ﬁ = [[bdl¢ [b2]c - [Prlc]

Pcp is the change of coordinates matrix from g to C
(PC<—/3)_1 = PB<—C
[c1 ¢z | by by ] = rowreduce to [ 1| Pecg ]

Chapter 5: Eigenvalues and Eigenvectors (Sections 1,2,3,4,5)
Section 1: Eigenvectors and Eigenvalues

An eigenvector of an nxn matrix is a nonzero vector x such that Ax = Ax for some scalar
A. A scalar A is called an eigenvalue of A if there is a nontrivial solution x for Ax = Ax;
such that x is called the eigenvector corresponding to A.

The null space of the matrix A — Al is called the eigenspace of A corresponding to A

The eigenvalues of a triangular matrix are the main entries on its diagonal

If v, ... v, are eigenvectors corresponding to distinct eigenvalues A, ... A, of an nxn matrix
A, then the set {v, ... v.} is linearly independent



Section 2: The Characteristic Equation

Invertible Matrix Theorem continued: A is invertible iff

0 The number 0 is not an eigenvalue of A

0 The determinant of A is not zero
A scalar A is an eigenvalue of an nxn matrix iff A satisfies the characteristic equation
det(A- Al)=0
For nxn matrix A, det(A - Al) is an n-degree characteristic polynomial
The multiplicity of an eigenvalue is its multiplicity as a root of the characteristic
equation
If A and B are nxn matrices, A and B are similar if there is an invertible matrix P such
that PAP~1 = B and conversely P"1BP = A
If nxn matrices A and B are similar, then they have the same characteristic polynomial
and hence the same eigenvalues with the same multiplicities
Similarity is not the same thing as row equivalence — performing row operations on a
matrix usually changes its eigenvalues

Section 3: Diagonalization

A is diagonoalizable if it is similar to a diagonal matrix D: A = PDP~?!

An nxn matrix is diagonalizeable iff it has n linearly independent eigenvectors

The columns of P are eigenvectors of A; the diagonal entries of D are the eigenvalues
corresponding to the order in P

An nxn matrix A is diagonalizable iff there are enough eigenvectors to form an
eigenvector basis of R™

An nxn matrix with n distinct eigenvalues is diagonalizable

For matrices whose eigenvalues are not distinct: an nxn matrix A is diagonalizable iff the
sum of the dimensions of the eigenspaces of its eigenvalues equals n (so if the
dimensions of the eigenspaces are equal to the multiplicity of their eigenvalues in the
characteristic equation)

Section 4: Eigenvectors and Linear Transformations

[T(x)]c = M[x]g where M = [ [T (by)]¢ [T(b2)]c .. [T(byp)]c]: Mis the matrix for T
relative to g or p-matrix for T

Suppose A = PDP~! where D is a diagonal nxn matrix. If B is the basis for R™ formed
from the columns of P, then D is the B-matrix for the transformation x = Ax

Section 5: Complex Eigenvalues

A complex scalar A satisfies det(A - Al) = 0 iff there is a nonzero vector in C™ such that
Ax = Ax; A is a complex eigenvalue and x is a complex eigenvector

The real and imaginary parts of a complex vector x are the vectors Re x and Im x in R"
formed from the real and the imaginary parts of the entries of x

When A is real, its complex eigenvalues occur in conjugate pairs (a + bi)



Let A be a real 2x2 matrix with a complex eigenvalue A = a — bi (b#0) and an associated

eigenvector v in C2. Then, A= PCP~* where P = [ Re(v) Im(v) ] and C = [Z _ab]

Chapter 6: Orthogonality and Least Squares (sections 1,2,3,4,5,6,7)
Section 1: Inner Product, Length, and Orthogonality

The number u”v is called the inner product (or dot product) of u and v.
V1
Uy
[ug Uz U] | )= Wi+ v+t Uy
Un
Properties of the inner product:
O uv=v-u
o (u+v) w=u-wt+v-w
o (cw)rv=clu-v)=u-(cv)
O u'uz0andu-u=0onlyifu=20
The length (or norm) of v is the nonnegative scalar ||v|| defined by
||v|| =J ()% + (v2)2 + -+ (v)% and ||17||2 =v-v
|levl|=lcl|lv]
A unit vector is a vector of length one; to normalize a vector, divide it by its norm
For u and v in R™ the distance between u and v is the length of the vector u — v:
dist(u,v) = ||u - v||
Two vectors u and v in R™ are orthogonal to each otherifu-v =0

. 2 2 2
Pythagorean theorem: two vectors are orthogonal iff ||u + v||” = [[ul|” + ||v]|
If a vector v is orthogonal to every vector in a subspace W, then it is orthogonal to W
The set of all vectors orthogonal to a subspace W is called the orthogonal component of
W and is denoted by W+
A vector x is in W if it is orthogonal to every vector in a set that spans W
W+ is a subspace of R"
Let A be an mxn matrix. Orthogonal component of the row space of A is the null space of
A and the orthogonal component of the column space of A is the null space of AT
In R? and R3: u - v = [ul|||v]| cos @

Section 2: Orthogonal Sets

A set of vectors {u; ...u,} is an orthogonal set in R™ if each pair of distinct vectors from
the set is orthogonal: u; - u; = 0 whenever ij

If S ={u; ...u,} is a set of orthogonal nonero vectors in R™ then S is linearly independent
and hence is a basis for the subspace spanned by S

An orthogonal basis for a subspace W of R" is a basis that is also an orthogonal set



Let {u, ...u,} be an orthogonal basis for a subspace W of of R™. For each y in W, the
weights of the linear combination y = c;u; + -+ + c,u, are given by ¢; = %
] 7]

A vector y in R™ can be written as the sum of a multiple of a vector u and an orthogonal
component to u y = y + z. The vector y is called the orthogonal projection of y onto u
and the vector z is called the component of y orthogonal to u
A projection is determined by the subspace L spanned by u; y = proj,y = %u
A set of vectors {u; ...u,} is an orthonormal set if it is an orthogonal set of unit vectors.
If W is spanned by such a set, then {u; ...u,} is an orthonormal basis for W
An mxn matrix U has orthonormal columns iff UTU = I
Let U be an mxn matrix with orthonormal columns and let y and x be in R™. Then,

o] ||Ux|| = ||x||

o (Ux)-(Uy)=x-y

o (Ux)-(Uy)=0iffx-y=0
An orthogonal matrix is a square invertible matrix U such that U~ = UT. Such a matrix
has orthonormal columns and orthonormal rows.

Section 3: Orthogonal Projections

The Orthogonal Decomposition Theorem:
0 Let W be a subspace of R™. Then each y in R™ can be written uniquely in the
formy =9 + z where y is in W and z is orthogonal to W. In fact, if {u; ...u,} is
any orthogonal basis of W, then § = u“;l w + o+ 2Ly andz = y-9
1'Uq D
y is the orthogonal projection of y onto W
If {u; ...u,} is an orthonormal basis, then projyyy = (v - upuy + -+ (¥ - up )uy,; if U =
[uy ...up ] then projy,y = UUTy forall y in R"

up-u

Section 4: The Gram-Schmidt Process

Gram-Schmidt is used to derive an orthogonal basis for a subspace from a given non-
orthogonal basis

Given a basis {x; x, ... x,} for a nonzero subspace W of R™

(0] vl = xl
0 v, =x,— 22y

2 — 2 V1V, 1

_ __ X3 __ X3V
0 V3 =3 = v —
o)
xp-vl xp-vp_l

0 v, =x,— vy — ey,

p =Xp =, o V1 oy vy LD~
0 Then {v; v, ...13,} is an orthogonal basis for W



Section 5: Least-Squares Problems

If Aiismxn and b is in R™, a least-squares solution of Ax=b is an X in R™ such that
|Ib — Az|| < |Ib — Ax]|| for all x in R"

The set of least-squares solutions of Ax=Db coincides with the nonempty set of solutions
of the normal equation AT Ax = ATh

2= (ATA)™1Ab

The distance from b to Ax is called the least-squares error of this approximation

Section 6: Applications to Linear Models

Least-squares lines: y = S, + B1x (x and y from experimental data)

Chapter 7: Symmetric Matrices and Quadratic Forms
Section 1: Diagonalization of Symmetric Matrices

A symmetric matrix is a matrix such that A = A7
If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal
An nxn matrix A is orthogonally diagonalizable (A = PDPT = PDP™Y)iff Aisa
symmetric matrix
Spectral theorem for symmetric matrices: an nxn symmetrix matrix A has the
following properties:
0 A has n real eigenvalues, counting multiplicities
o The dimension of the eigenspace of each eigenvalue equals its multiplicity as a
root of the characteristic equation
0 The eigenspaces are mutually orthogonal (eigenvectors corresponding to different
eigenvalues are orthogonal
o A isorthogonally diagonalizable



True/False Review
Chapter 1

(k) If A is an mxn matrix and the equation Ax=b is consistent for every b in R™, then A has m
pivot columns:
TRUE - for Ax=b to be consistent for every b there needs to be a pivot in
every row

(o) If A is an mxn matrix, of the equation Ax=Db has at least two different solutions, and if the
equation Ax=c is consistent, then Ax=c has many solutions:
TRUE - the two are translations of one another, have the same number of solutions (so, many
solutions)

(u) If u, v, and w are nonzero vectors in R?, then w is a linear combination of u and v:
FALSE — if u and v are multiples of one another, w will not be a linear combination of u & v

(w) Suppose that ¥4, v,, and v5 are in R®, v, not a multiple of v,, and v5 is not a linear
combination of v; and v,. Then, {v4,v,, v3} is linearly independent
FALSE - if one of the vectors is the zero vector, the set would be linearly dependent by
definition

(2) If A'is an mxn matrix with m pivot columns, then the linear transformation x> Ax is one-to-
one:
FALSE - for the transformation to be one-to-one, the standard matrix needs to have a pivot in
every column. In this case, it has a pivot in every row, which means that it would be one-to-
one only if m=n

Chapter 2

(b) If AB=C and C has 2 columns, then A has 2 columns.
False: C will have the same number of rows as A and the same number of columns as B

(c) Left-multiplying a matrix B by a diagonal matrix A with nonzero entries on the diagonal,
scales the rows of B
True: each row of A will only have one nonzero entry in each row and that entry will scale
the rows of B

(e) If AC =0, then either A=00orC=0
False: a row vector and a column vector can have nonzero entries and still give zero as a
result of multiplication (for instance, row vector [1 1] and column vector [1 -1] )

(f) If A and B are nxn, then (A + B) (A - B) = A% — B?
False: (A + B)(A — B) = A? — B2 — AB + BA; since matrix multiplication is NOT
commutative, AB # BA



(D 1f AB =1, then A is invertible
False: this statement does not specify whether or not A is a square matrix. There could be a
case where A is an nxm matrix and B is an mxn matrix, and their product results in the
identity matrix. Only square matrices can be invertible.

(m) If A and B are square and invertible, then AB is invertible, and (4B)™! = A"1B~!
False: this statement does not state that A and B are the same size (could be nxn and mxm in
which case their multiplication would not make any sense). Even if we assume that A and be
have the same size, (AB)™! = B~1A™1, in reverse order of what was stated

(n) If AB = BA and if A is invertible, then A™1B = BA™?!
True: take AB = BA and multiply both sides on the left by A~1, getting B = A~! BA. Then
multiply on the right by A=* which gives you BA™* = A™1B

1
O] has a unique solution, then A is invertible.

0
True: for the system to have a unique solution, the homogeneous case Ax=0 must only have

one solution, which means that there is a pivot in every row of the matrix A. As a result, the
matrix is invertible.

(p) If Ais a 3 x 3 matrix and the equation Ax =

Chapter 3

(@) If A is a 2x2 matrix with a zero determinant, then one column of A is a multiple of the other
True: a zero determinant implies that the matrix is not invertible, which means that its
columns are linearly dependent.

(c) If A'is a 3x3 matrix, then det 5A =5 det A
False: det 5A means that every row of A is multiplied by 5. Recall the rule that if one row of
A is multiplied by k to get matrix B, then k detA=detB. This means that det 5A = 125 det A

(9) If B is produced by multiply row 3 of A by 5, thendet B =5 det A
True: if one row of A is multiplied by k to get matrix B, then det B = k det A

(i) det AT = —detA
False: det AT = detA

(k) detATA > 0
True: det AT A = det AT det 4; now recall that det AT = det 4, which means that
det ATA = (det A)%. If A'is not invertible, detA = 0. If A is invertible, (det4)? > 0

() Any system of n linear equations in n variables can be solved by Cramer’s rule
False: Cramer’s rule can only be applied if the nxn matrix of the system is invertible; in other
words, the system of linear equations must form a linearly independent set



(n) If A3 =0, thendet A=0
True: det A3 = det 0 = 0; since det AB = det A det B, we can say that det A> = (det 4)3
and since det 4> = 0,det A=0

(p) If Ais invertible, then (det A)(detA™*) =1

True: detA™! = ——
det 4

Chapter 4

(a) The set of all linear combinations of v, ... v, is a vector space
True: such set constitutes Span {v; ... v, }

(c) For S={v, ... v}, if {v; ... v,_1} is linearly independent, then so is S
False: v, could be a linear combination of its preceding vectors in which case S is not
linearly independent

(f) For vector space V and subspace S={v, ...}, }, if dim V = p and Span S =V, then S cannot be
linearly dependent
True: since S (which has p components) spans the p-dimensional vector space V, all the
vectors in the set S must be linearly independent because in order to span V, S has to have p
linearly independent components

(h) The nonpivot columns of a matrix are always linearly dependent
False: there could be nonpivot columns that are linearly independent

(1) Row operations on a matrix can change its null space
False: row operations on A do not change the solutions to Ax=0

(D) 1f an mxn matrix A is row equivalent to an echelon matrix U, and if U has k nonzero rows,
then the dimension of the solution space of Ax=0 is m-k
False: if U has k nonzero rows, rank A = k. We know that rank A + dim Nul A =n, NOT m;
therefore, the dimension of the null space of A equals n-k

(g) If A'is mxn and rank A =m, then the linear transformation x> Ax is one-to-one
False: to be one to one, rank A would need to be n (number of columns), not m (number of
rows) — in matrix form, a pivot in every column

(r) If A'is mxn and the linear transformation x> Ax is onto, then rank A =m
True: for the transformation to be onto, rank A must be the number of rows, m (in matrix
form, a pivot in every row)

(s) A change-of-coordinates matrix is always invertible
True: since the columns of the change-of-coordinates matrix are basis vectors, they are by
definition linearly independent which means that the matrix is square has a pivot in every row
and column, meaning that the matrix is invertible.
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(a) If A is invertible and 1 is an eigenvalue of A, then 1 is also an eigenvalue of A™1
True: if Ax=1x and we left-multiply both sides by A™1, we get A~1x = 1x which means that 1
is an eigenvalue of A~1

(b) If A'is row equivalent to the identity matrix I, then A is diagonalizable
False: being row equivalent to the identity matrix makes a matrix invertible; not all invertible
matrices are diagonalizable.

(c) If A contains a row or column of zeroes, then 0 is an eigenvalue for A
True: if A contains a row or column of zeroes, it is not invertible and all noninvertible
matrices have zero as an eigenvalue

(e) Each eigenvector of A is also an eigenvector of A2
True: If given Ax = Ax, left multiplying both sides by A we get A2x = AAx which then
follows as A%x = A%x. This means that X is an eigenvector for both A and A?

(i) Two eigenvectors corresponding to the same eigenvalue are always linearly dependent
False: an eigenvalue with a multiplicity greater than zero could have several linearly
independent eigenvectors

(I) The sum of two eigenvectors of a matrix A is also an eigenvector of A
False: the sum of two eigenvectors generally is not an eigenvector

(n) The matrices A and AT have the same eigenvalues, counting multiplicities
True: matrices A and AT have the same characteristic equation

(g) If A is diagonalizable, then the columns of A are linearly independent
False: if columns of A are linearly independent, the matrix is invertible; a matrix does not
have to be invertible to be diagonalizable

(x) If A'is an nxn diagonalizable matrix, then each vector in R™ can be written as a combination
of eigenvectors of A
True: since A is diagonalizable, its eigenvectors form an eigenbasis for R™

Chapter 6

(F) If x is orthogonal to both u and v, then x must be orthogonal to u-v
True: if xu=0 and xv=0, then xu-xv=0 and x(u-v)=0 meaning that x is orthogonal to u-v

() 1f [Ju — vI|* = [Jul|* + [IvI|” then u and v are orthogonal
True: the Pythagorean Theorem states that u and v are orthogonal if

lw+vl|* = [[ul]* + |Iv]|; in the case given, v is replaced with (-v) and ||—v||” = ||v||*



(j) If a vector y coincides with its orthogonal projection onto a subspace W then y is in W
True: the orthogonal projection of y onto W is always in W so y is in W

(K) The set of all vectors in R™ orthogonal to one fixed vector is a subspace of R™
True

(n) If a matrix U has orthonormal columns, then UUT = I
False: this would be true if the matrix was square

(o) A square matrix with orthogonal columns is an orthogonal matrix
False: the columns of an orthogonal matrix are orthonormal

(p) If a square matrix has orthonormal columns, then it also has orthonormal rows
True: orthogonal matrices have orthonormal columns and rows

() If W is a subspace, then ||proij||2 +|lv— proij||2 = ||v||2
True: v — projy,v and projy,,v are orthogonal so the given statement is the Pythagorean
Theorem

Chapter 7

(@) If A is orthogonally diagonalizable, then it is symmetric
True: only symmetric matrices are orthogonally diagonalizable

(c) If A'is an orthogonal matrix, then ||Ax||=|[x|| for all x in R™
True: an orthogonal matrix has orthogonal unit vectors as columns so ||AX||=|x|]

(e) If A is an nxn matrix with orthogonal columns, then AT = A1
False: for that to happen, the matrix needs to have orthonormal columns



