
Math 54 Final Exam Review  
 

Chapter 1: Linear Equations in Linear Algebra (Sections 1,2,3,4,5,7,8,9) 
 

Section 1: Systems of Linear Equations 
 

• Two systems of equations are equivalent if they have the same solution set 
• System of equations is consistent if it has one or infinitely many solutions; it is 

inconsistent if it has no solutions 
• m×n matrix: m rows, n columns 
• Elementary row operations (they are reversible): 

o Replacement: add to a row a multiple of another row 
o Interchange: interchange two rows 
o Scaling: multiply all entries in a row by a nonzero constant 

• Two matrices are row equivalent if there exists a sequence of elementary row operations 
that transforms one matrix into the other; they have the same solution set 

• 2 fundamental questions: existence and uniqueness 
 

Section 2: Row Reduction and Echelon Forms 
 

• Leading entry: leftmost nonzero entry in a nonzero row 
• Row echelon form of a matrix: 

o All nonzero rows are above any rows of zeros 
o Each leading entry of  a row is in a column to the right of the leading entry of the 

row above it 
o All entries in a column below the leading entry are zero 

• Reduced row echelon form of a matrix:  
o Leading entry in each nonzero row is 1 
o Each leading 1 is the only nonzero entry in its column 

• Each matrix can be reduced down to multiple different matrices in echelon form, but is 
only row equivalent to one matrix in reduced row echelon form. 

• A pivot position is a location that corresponds to a leading 1 in RREF of the matrix. A 
pivot column is the column of A that contains a pivot position. 

• A linear system is consistent iff its augmented matrix contains no rows [0 0 … 0 | b] with 
a nonzero b (that corresponds to 0=b which is inconsistent) 

 
Section 3: Vector Equations  

 
• Column vector (or just vector): a matrix with only one column 
• Two vectors are equal if their corresponding entries are equal  
• For vectors y, 𝒗𝒗𝒏𝒏, and scalars 𝑐𝑐𝑛𝑛 – if 𝒚𝒚 = 𝑐𝑐1𝒗𝒗𝟏𝟏 + ⋯+ 𝑐𝑐𝑛𝑛𝒗𝒗𝒏𝒏 then y is a linear 

combination of vectors v with weights c 
• Span {𝒗𝒗𝟏𝟏…𝒗𝒗𝒏𝒏} is the collection of all vectors that can be written as 𝑐𝑐1𝒗𝒗𝟏𝟏 + ⋯+  𝑐𝑐𝑛𝑛𝒗𝒗𝒏𝒏 
• Is b in Span {𝒗𝒗𝟏𝟏…𝒗𝒗𝒏𝒏}? This is the same thing as asking if 𝑥𝑥1𝒗𝒗𝟏𝟏 + ⋯+  𝑥𝑥𝑛𝑛𝒗𝒗𝒏𝒏 = 𝒃𝒃 has a 

solution 



Section 4: The Matrix Equation Ax=b 
 

• If A is an m×n matrix with columns 𝒂𝒂𝟏𝟏…𝒂𝒂𝒏𝒏 and x is in ℝ𝑛𝑛, then  

Ax = [𝒂𝒂𝟏𝟏…𝒂𝒂𝒏𝒏] �
𝒙𝒙𝟏𝟏
⋮
𝒙𝒙𝒏𝒏
� = 𝒙𝒙𝟏𝟏𝒂𝒂𝟏𝟏 + ⋯+  𝒙𝒙𝒏𝒏𝒂𝒂𝒏𝒏  

• Ax=b has a solution (existence) iff b is a linear combination of the columns of A 
• Properties of Ax: 

o A(u + v) = A(u) + A(v) 
o A(cu)=cA(u) 

 
Section 5: Solution Sets of Linear Systems 

 
• A system is homogeneous if it can be written as Ax = 0; there is always a zero solution 

(a trivial solution) 
• The homogeneous equation Ax = 0 has a nontrivial solution iff the equation has at least 

one free variable 
• Implicit description: the original equations. Explicit description: parametric vector 

equation 
• If Ax = b has a solution, then the solution set is obtained by translating the solution set of 

Ax = 0, using any particular solution p of Ax = b for the translation 
 

Section 7: Linear Independence  
 

• A set of vectors {𝒗𝒗𝟏𝟏…𝒗𝒗𝒏𝒏} is linearly independent if the vector equation 𝑥𝑥1𝒗𝒗𝟏𝟏 + ⋯+
 𝑥𝑥𝑛𝑛𝒗𝒗𝒏𝒏 = 𝟎𝟎 has only the trivial solution;  otherwise, the set is linearly dependent 

• The columns of a matrix A are linearly independent iff the equation Ax = 0 has only the 
trivial solution 

• A set of two vectors is linearly dependent if one of the vectors is a multiple of the other; 
linearly independent otherwise 

• A set of two or more vectors is linearly dependent iff at least one of the vectors in the set 
is a linear combination of the others 

• If a set contains more vectors than there are entries in each vector, then the set is linearly 
independent 

• If a set contains the zero vector, then it is linearly dependent 
 

Section 8: Introduction to Linear Transformations 
 

• A transformation (or function or mapping) T from ℝ𝑛𝑛 to ℝ𝑚𝑚  is a rule that assigns for 
each vector x in ℝ𝑛𝑛 a vector T(x) in ℝ𝑚𝑚 

• ℝ𝑛𝑛 is the domain of T, ℝ𝑚𝑚 is the codomain of T 
• Set of all images T(x) is the range of T 
• Matrix transformation: T(x) is computed as Ax 
• A transformation T is linear if: 

o T(u + v) = T(u) + T(v) for all u, v in the domain of T 
o T(cu) = cT(u) for all scalars c and all u in the domain of T 



• If T is a linear transformation, then T(0) = 0 (maps the zero vector to the zero vector) 
 

Section 9: The Matrix of a Linear Transformation 
 

• For linear transformation T: ℝ𝑛𝑛 → ℝ𝑚𝑚 there exists a unique m×n matrix A such that 
T(x)=Ax for all x in ℝ𝑛𝑛; A is called the standard matrix for a linear transformation 

• A = [ 𝑇𝑇(𝒆𝒆𝟏𝟏) …  𝑇𝑇(𝒆𝒆𝒏𝒏) ] 
• A mapping T: ℝ𝑛𝑛 → ℝ𝑚𝑚 is onto ℝ𝑚𝑚 if each b in ℝ𝑚𝑚 is an image of at least one x in ℝ𝑛𝑛 – 

there exists at least one solution to T(x)=b; Ax=b is consistent (no zero rows) 
• A mapping T: ℝ𝑛𝑛 → ℝ𝑚𝑚 is one-to-one ℝ𝑚𝑚 if each b in ℝ𝑚𝑚 is an image of at most one x 

in ℝ𝑛𝑛 – T(x)=b has a unique solution or no solution; T(x)=0 has only the trivial solution 
• For T: ℝ𝑛𝑛 → ℝ𝑚𝑚, with A being the standard matrix of the transformation: 

o T maps ℝ𝑛𝑛 onto ℝ𝑚𝑚 iff the columns of A span ℝ𝑚𝑚 (pivot in every row) 
o T is one-to-one iff the columns of A are linearly independent (pivot in every 

column) 
 

Chapter 2: Matrix Algebra (sections 1,2,3,8,9) 
 

Section 1: Matrix Operations 
 

• The diagonal entries of an m×n matrix A = [𝑎𝑎𝑖𝑖𝑖𝑖] are 𝑎𝑎11,𝑎𝑎22,𝑎𝑎33, etc. and they form the 
main diagonal of A 

• A diagonal matrix is an n×n square matrix whose nondiagonal entries are zero 
• An m×n matrix all of whose entries are zero is the zero matrix  
• Two matrices are equal if they have the same size and their corresponding columns are 

equal 
• Properties of matrix addition: 

o A + B = B + A 
o (A + B) + C = A + (B + C) 
o A + 0 = A 
o r(A + B) = rA + rB 
o (r + s)A = rA + sA 
o r(sA) = (rs)A 

• If A is an m×n matrix and B is an n×p matrix, AB = A[𝑏𝑏1 𝑏𝑏2 … 𝑏𝑏𝑝𝑝] = [𝐴𝐴𝑏𝑏1 𝐴𝐴𝑏𝑏2 … 𝐴𝐴𝐴𝐴𝑝𝑝] 
• Each column of AB is a linear combination of the columns of A using weights from the 

corresponding column of B (for entry ij of the matrix AB, multiply row i of A by column 
j of B) 

• AB has same number of rows as A and same number of columns as B 
• Properties of matrix multiplication (for A m×n matrix) 

o A(BC) = (AB)C 
o A(B+C) = AB + AC 
o (B+C)A = BA + CA 
o r(AB) = (rA)B = A(rB) 
o 𝐼𝐼𝑚𝑚𝐴𝐴 = 𝐴𝐴 = 𝐴𝐴𝐼𝐼𝑛𝑛 



• Given an m×n matrix A, the transpose of A is the n×m matrix 𝐴𝐴𝑇𝑇 whose columns are 
formed by the corresponding rows of A 

• Properties of transpose: 
o (𝐴𝐴𝑇𝑇)𝑇𝑇 = A 
o (𝐴𝐴 + 𝐵𝐵)𝑇𝑇 = 𝐴𝐴𝑇𝑇+𝐵𝐵𝑇𝑇 
o For any scalar r, (𝑟𝑟𝑟𝑟)𝑇𝑇 = r𝐴𝐴𝑇𝑇 
o (𝐴𝐴𝐴𝐴)𝑇𝑇 = 𝐵𝐵𝑇𝑇𝐴𝐴𝑇𝑇 

• A and B commute with each other if AB = BA (not true in general cases) 
 

Section 2: The Inverse of a Matrix 
 

• An n×n matrix A is invertible if there exists an n×n matrix C for which AC=I and CA=I 
• A singular matrix is not invertible; a nonsingular matrix is invertible. 
• For a 2×2 matrix A = �𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑�, 𝐴𝐴
−1 = 1

det (𝐴𝐴)
� 𝑑𝑑 −𝑏𝑏
−𝑐𝑐 𝑎𝑎 �; if det(A) = 0, the matrix is not 

invertible 
• If A is an invertible n×n matrix, then for each b in ℝ𝑛𝑛 the equation Ax = b has the unique 

solution x = 𝐴𝐴−1b 
• Properties of the matrix inverse: 

o (𝐴𝐴−1)−1 = 𝐴𝐴 
o (𝐴𝐴𝐴𝐴)−1 = 𝐵𝐵−1𝐴𝐴−1 
o (𝐴𝐴𝑇𝑇)−1 = (𝐴𝐴−1)𝑇𝑇 

• The product of two invertible matrices is invertible 
• An n×n matrix A is invertible iff it is row equivalent to 𝐼𝐼𝑛𝑛 
• To find the inverse of A, write [𝐴𝐴 | 𝐼𝐼𝑛𝑛] → 𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 [ 𝐼𝐼𝑛𝑛 | 𝐴𝐴−1] 

 
Section 3: Characteristics of Invertible Matrices 

 
• Invertible matrix theorem: for any given square nxn matrix  A, the following are either all 

true or all false 
o A is invertible 
o A is row equivalent to the nxn identity matrix 
o A has n pivot positions 
o The equation Ax=0 has only the trivial solution 
o The columns of A form a linearly independent set 
o The linear transformation x  Ax is one-to-one 
o The equation Ax = b has at least one solution for each b in ℝ𝑛𝑛 
o The columns of A span ℝ𝑛𝑛 
o The linear transformation x  Ax maps  ℝ𝑛𝑛 onto ℝ𝑛𝑛 
o There is a square nxn matrix C such that CA=I 
o There is a square nxn matrix D such that AD = I 
o 𝐴𝐴𝑇𝑇 is an invertible matrix 

• A linear transformation T: ℝ𝑛𝑛 →  ℝ𝑛𝑛 is invertible if there exists a function S: ℝ𝑛𝑛 →  ℝ𝑛𝑛 
such that S(T(x)) = x and T(S(x)) = x for all x in ℝ𝑛𝑛 (S is the inverse of T; notation: 𝑇𝑇−1) 

• T: ℝ𝑛𝑛 →  ℝ𝑛𝑛 is invertible iff its standard matrix A is invertible; 𝑇𝑇−1(𝑥𝑥) = 𝐴𝐴−1𝑥𝑥 
 



Section 8: Subspaces of ℝn 
 

• A subspace of ℝn in any set H has 3 properties: 
o The zero vector is in H 
o For each u and v in H, u+v is in H (vector addition) 
o For each u in H and each scalar c, the vector cu is in H 

• Span {𝒗𝒗𝟏𝟏…𝒗𝒗𝒏𝒏} is the subspace spanned by 𝒗𝒗𝟏𝟏…𝒗𝒗𝒏𝒏 
• The zero subspace is the set consisting of only the zero vector  
• The column space of a matrix A is the set Col A of all linear combinations of the 

columns of A; it’s the space of all vectors b for which Ax = b is solvable 
• The column space of an mxn matrix is a subspace of ℝm 
• The null space of a matrix A is the set Nul A of all solutions of the homogeneous 

equation Ax=0 
• The null space of an mxn matrix A is a subspace of ℝn 
• A basis for a subspace H of ℝn is a linearly independent set in H that spans H 
• The set {𝒆𝒆𝟏𝟏…𝒆𝒆𝒏𝒏} is the standard basis for ℝn 
• To find basis for column space: row reduce matrix to find its pivot columns; the set of the 

pivot columns of the ORIGINAL matrix (before row reduction) is the column space 
• To find basis for null space: find solution of Ax = 0; the set of vectors in parametric 

vector form of the solution is the basis for null space 
• (not in chapter): row space of A is the set Row A of all linear combinations of the rows 

of A 
• (not in chapter): to find the basis for row space, row reduce the matrix to reduced row 

echelon form. The nonzero rows will form the basis for Row A 
• (not in chapter): left null space of A is the null space of 𝐴𝐴𝑇𝑇 
• (not in chapter): to find the basis for left null space, first write [ A | 𝐼𝐼𝑚𝑚 ] then row reduce 

so that it becomes [ rref(A) | M ]; every row in M corresponding to a zero row in rref(A) 
is a basis vector for LNul A 

• (not in chapter): left null space is orthogonal to column space; row space is orthogonal to 
null space 

 
Section 9: Dimension and Rank 

 
• Suppose that 𝛽𝛽 = �𝑏𝑏1 … 𝑏𝑏𝑝𝑝� is a basis for subspace H. For each x in H, the coordinates of 

x relative to H are the weights 𝑐𝑐1 … 𝑐𝑐𝑝𝑝 such that x = 𝑐𝑐1𝑏𝑏1 + ⋯+ 𝑐𝑐𝑝𝑝𝑏𝑏𝑝𝑝 and the vector in 

ℝp [𝑥𝑥]𝛽𝛽 = �
𝑐𝑐1
⋮
𝑐𝑐𝑝𝑝
� is the 𝛽𝛽-coordinate vector of x 

• The dimension of a nonzero subspace H (dim H) is the number of vectors in basis of H. 
The dimension of the zero subspace is defined as zero. 

• The rank of a matrix A is the dimension of the column space of A (so, the number of 
pivot points) 

• If a matrix A has n columns, rank A + dim Nul A = n 
• If H is a p-dimensional subspace of ℝn, any linearly independent set of exactly p 

elements in H is a basis of H 



• Invertible matrix theorem cont. (for a square nxn matrix A these are all true or all false) 
o Columns of A form a basis of ℝn 
o Col A = ℝn 
o dim Col A = n 
o rank A = n 
o Nul A = {0} 
o dim Nul A = 0 

 
 

Chapter 3: Determinants (Sections 1,2,3) 
 

Section 1: Introduction to Determinants 
 

• The determinant of an nxn matrix A=[𝑎𝑎𝑖𝑖𝑖𝑖] is the sum of n terms of the form ±𝑎𝑎𝑖𝑖𝑖𝑖det𝐴𝐴𝑖𝑖𝑖𝑖; 
so det A = ∑ (−1)1+𝑗𝑗𝑎𝑎1𝑗𝑗 det𝐴𝐴1𝑗𝑗𝑛𝑛

𝑗𝑗=1  
• Given A=[𝑎𝑎𝑖𝑖𝑖𝑖], the (i, j)-cofactor of A 𝐶𝐶𝑖𝑖𝑖𝑖 = (−1)1+𝑗𝑗 det𝐴𝐴𝑖𝑖𝑖𝑖 
• The determinant of an nxn matrix can be computed by a cofactor expansion across any 

row or down any column: 
o det A = 𝑎𝑎𝑖𝑖1𝐶𝐶𝑖𝑖1 + 𝑎𝑎𝑖𝑖2𝐶𝐶𝑖𝑖2 + ⋯+ 𝑎𝑎𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖 
o det A = 𝑎𝑎1𝑗𝑗𝐶𝐶1𝑗𝑗 + 𝑎𝑎2𝑗𝑗𝐶𝐶2𝑗𝑗 + ⋯+ 𝑎𝑎𝑛𝑛𝑛𝑛𝐶𝐶𝑛𝑛𝑛𝑛 

• cofactor signs: �
+ − +
− + −
+ − +

� etc. 

• If A is a diagonal matrix, then det A is the product of the entries on its main diagonal 
 

Section 2: Properties of Determinants 
 

• For square matrix A: 
o If a multiple of one row of A is added to another row to produce B, then det B = 

det A 
o If two rows of A are interchanged to produce B, then det B = - det A 
o If one row of A is multiplied by k to produce B, then det B = k det A 

• For matrix A and its corresponding matrix U in rref; r is the number of times rows have 
been swapped places: 

o det A = �(−𝟏𝟏)𝒓𝒓(𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒐𝒐𝒐𝒐 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒊𝒊𝒊𝒊 𝑼𝑼) ∶  𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝐴𝐴 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝟎𝟎 ∶   𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝐴𝐴 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

  

• A square matrix A is invertible only if det A ≠ 0 
• If A is an nxn matrix, det 𝐴𝐴𝑇𝑇= det A 
• If A and B are nxn matrices, det AB = (det A)(det B) 
• det𝐴𝐴−1 = 1

det 𝐴𝐴
 

 
 
 
 
 



 
Section 3: Carmer’s Rule, Volume, and Linear Transformations 

 
• Cramer’s rule: let A be an invertible nxn matrix. For any b in ℝ𝑛𝑛, the unique solution x 

of Ax=b has entries given by  
o 𝑥𝑥𝑖𝑖 = det𝐴𝐴𝑖𝑖(𝑏𝑏)

det𝐴𝐴
 𝑖𝑖 = 1,2 …𝑛𝑛  

o Here, 𝐴𝐴𝑖𝑖(𝑏𝑏) means that the ith column of the matrix A is replaced by the vector b 
• The adjugate (or classical adjoint) of A (adj A) is the matrix of cofactors 

�
𝐶𝐶11 ⋯ 𝐶𝐶1𝑛𝑛
⋮ ⋱ ⋮
𝐶𝐶𝑛𝑛1 ⋯ 𝐶𝐶𝑛𝑛𝑛𝑛

� 

• If A is an invertible nxn matrix, 𝐴𝐴−1 = 1
det 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴) 
• For a 2x2 matrix A, the area of the parallelogram determined by the columns of A is 

|detA| 
• For a 3x3 matrix A, the volume of the parallelepiped determined by the columns of A is 

|detA| 
• Let T: ℝ2 → ℝ2 be the linear transformation determined by a 2x2 matrix A. If S is a 

parallelogram in ℝ2, then {area of T(S)}= |detA| {area of S} 
• Let T: ℝ3 → ℝ3 be the linear transformation determined by a 3x3 matrix A. If S is a 

parallelepiped in ℝ3, then {volume of T(S)}= |detA| {volume of S} 
 

Chapter 4: Vector Spaces (Sections 1,2,3,4,5,6,7) 
 

Section 1: Vector Spaces and Subspaces  
 

• A vector space is a nonempty set V of objects (vectors) on which addition and 
multiplication by scalars is defined. Following axioms hold true for all vector spaces, 
with u, v, and w in V and scalars c, d 

o u + v is in V 
o u + v = v + u 
o (u + v) + w = u + (v + w) 
o There is a zero vector 0 in V such that u + 0 = 0 
o For each u in V, there is a vector –u in V such that u + (-u) = 0 
o cu is in V 
o c (u + v) = cu + cv 
o (c + d) u = cu + du 
o c(du) = (cd)u 
o 1u = u 

• A subspace of a vector space Vis a subset H of V that has three properties: 
o The zero vector of V is in H 
o H is closed under vector addition (for each u and v in H, u+v is also in H) 
o H is closed under scalar multiplication (for each u in H, every cu is in H) 

• A subspace H of V is itself a vector space 
• Every vector space is a subspace (of itself and possibly other larger space) 
• The set consisting of only the zero vector in a vector space V is called the zero subspace 



• If 𝑣𝑣1 …𝑣𝑣𝑝𝑝 are in a vector space V, then Span{𝑣𝑣1 … 𝑣𝑣𝑝𝑝} is a subspace of V 
• A spanning set for subspace H is 𝑣𝑣1 … 𝑣𝑣𝑝𝑝 such that H= Span{𝑣𝑣1 … 𝑣𝑣𝑝𝑝} 

 
Section 2: Null Spaces, Column Spaces, and Linear Transformations  

 
• The null space of an mxn matrix A is the set of all solutions of Ax=0 and is a subspace 

of ℝ𝑛𝑛 
• The column space of an mxn matrix A is the set of all linear combinations of the 

columns of A; it is a subspace of ℝ𝑚𝑚 
• The columns space of an mxn matrix A is all of ℝ𝑚𝑚 iff Ax=b has a solution for every b 
• A linear transformation T from a vector space V into a vector space W is a rule that 

assigns to each vector x in V a unique vector T(x) in W such that  
o T(u+v) = T(u) + T(V)  
o T(cu) = c T(u) 

 
Section 3: Linearly Independent Sets; Bases 

 
• An indexed set {𝑣𝑣1 … 𝑣𝑣𝑝𝑝} of two or more vectors (none the zero vector) is linearly 

dependent iff some 𝑣𝑣𝑗𝑗  is a linear combination of the preceding vectors 𝑣𝑣1 … 𝑣𝑣𝑗𝑗−1 
• Let H be a subspace of a vector space V. An indexed set of vectors 𝛽𝛽 = {𝑏𝑏1 … 𝑏𝑏𝑝𝑝} in V is 

a basis for H if 
o 𝛽𝛽 is a linearly independent set 
o The subspace spanned by 𝛽𝛽 coincides with H 

• The standard basis for ℙ𝑛𝑛 is {1,t,𝑡𝑡2…} 
• Let S = {𝑣𝑣1 … 𝑣𝑣𝑝𝑝} be a set in V and H = Span {𝑣𝑣1 … 𝑣𝑣𝑝𝑝} 

o If one of the vectors in S is a linear combination of other vectors, then the set 
formed by S after removing that vector still spans H 

o If H≠{0}, some subset of S is a basis for H 
 

Section 4: Coordinate Systems  
 

• Let 𝛽𝛽 = {𝑏𝑏1 … 𝑏𝑏𝑛𝑛} be a basis for a vector space V. Each vector x in V can be expressed as 
x = 𝑐𝑐1𝑏𝑏1 + ⋯+ 𝑐𝑐𝑛𝑛𝑏𝑏𝑛𝑛 

• The 𝛽𝛽-coordinates of x are the weights 𝑐𝑐1 … 𝑐𝑐𝑛𝑛 

• [𝑥𝑥]𝛽𝛽 = �
𝑐𝑐1
⋮
𝑐𝑐𝑛𝑛
� is the 𝛽𝛽-coordinate vector of x 

• Mapping x  [𝑥𝑥]𝛽𝛽 is the coordinate mapping determined by 𝛽𝛽 
• Let 𝑃𝑃𝛽𝛽 = [𝑏𝑏1 … 𝑏𝑏𝑛𝑛], 𝑃𝑃𝛽𝛽 a change of coordinates matrix. x = 𝑐𝑐1𝑏𝑏1 + ⋯+ 𝑐𝑐𝑛𝑛𝑏𝑏𝑛𝑛 is the 

same thing as saying 𝑥𝑥 = 𝑃𝑃𝛽𝛽[𝑥𝑥]𝛽𝛽 
• Let 𝛽𝛽 be a basis for a vector space V. Then the coordinate mapping x  [𝑥𝑥]𝛽𝛽 is a one-to-

one linear transformation onto ℝ𝑛𝑛 
 
 



Section 5: The Dimension of a Vector Space 
 

• If a vector space V has a basis 𝛽𝛽 = {𝑏𝑏1 … 𝑏𝑏𝑛𝑛} then any set in V containing more than n 
vectors must be linearly dependent  

• If a vector space V has a basis of n vectors, every basis of V will contain n vectors 
• V is finite-dimensional if it is spanned by a finite set; V is infinite-dimensional if it is 

spanned by an infinite set 
• If H is a subspace of a finite-dimensional vector space V, H is finite-dimensional and any 

linearly independent set in H can be expanded to a basis for H. Also, dim H ≤ dim V 
• Let V be a p-dimensional subspace. Any linearly independent set of exactly p vectors in 

V is automatically a basis for V 
 

Section 6: Rank 
 

• The row space of A is the set of all linear combinations of the row vectors 
• If A and B are row equivalent, their row spaces are the same. If B is in echelon form, the 

nonzero rows of B form a basis for the row space of B and of A 
 

Section 7: Change of Basis  
 

• Let 𝛽𝛽 = {𝑏𝑏1 … 𝑏𝑏𝑛𝑛} and ∁= {𝑐𝑐1 … 𝑐𝑐𝑛𝑛} be bases for a vector space V. Then there is a unique 
nxn matrix 𝑃𝑃𝐶𝐶←𝛽𝛽 such that  

o [𝑥𝑥]𝐶𝐶 = 𝑃𝑃𝐶𝐶←𝛽𝛽[𝑥𝑥]𝛽𝛽 
o The columns of 𝑃𝑃𝐶𝐶←𝛽𝛽 are the C-coordinate vectors of the vectors in basis 𝛽𝛽: 

𝑃𝑃𝐶𝐶←𝛽𝛽 = [ [𝑏𝑏1]𝐶𝐶   [𝑏𝑏2]𝐶𝐶 … [𝑏𝑏𝑛𝑛]𝐶𝐶  ] 
• 𝑃𝑃𝐶𝐶←𝛽𝛽 is the change of coordinates matrix from 𝛽𝛽 to C 
• (𝑃𝑃𝐶𝐶←𝛽𝛽)−1 =  𝑃𝑃𝛽𝛽←𝐶𝐶 
• [𝑐𝑐1 𝑐𝑐2 | 𝑏𝑏1 𝑏𝑏2 ]  → 𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 [ 𝐼𝐼 | 𝑃𝑃𝐶𝐶←𝛽𝛽 ]  

 
Chapter 5: Eigenvalues and Eigenvectors (Sections 1,2,3,4,5) 

 
Section 1: Eigenvectors and Eigenvalues  

 
• An eigenvector of an nxn matrix is a nonzero vector x such that Ax = λx for some scalar 

λ. A scalar λ is called an eigenvalue of A if there is a nontrivial solution x for Ax = λx; 
such that x is called the eigenvector corresponding to λ. 

• The null space of the matrix A – λI is called the eigenspace of A corresponding to λ 
• The eigenvalues of a triangular matrix are the main entries on its diagonal 
• If 𝑣𝑣1 …𝑣𝑣𝑟𝑟 are eigenvectors corresponding to distinct eigenvalues λ1 … λ𝑟𝑟 of an nxn matrix 

A, then the set {𝑣𝑣1 …𝑣𝑣𝑟𝑟} is linearly independent  
 
 
 
 
 



Section 2: The Characteristic Equation 
 

• Invertible Matrix Theorem continued: A is invertible iff 
o The number 0 is not an eigenvalue of A 
o The determinant of A is not zero 

• A scalar λ is an eigenvalue of an nxn matrix iff λ satisfies the characteristic equation 
det(A -  λI) = 0 

• For nxn matrix A, det(A -  λI) is an n-degree characteristic polynomial 
• The multiplicity of an eigenvalue is its multiplicity as a root of the characteristic 

equation 
• If A and B are nxn matrices, A and B are similar if there is an invertible matrix P such 

that 𝑃𝑃𝐴𝐴𝑃𝑃−1 = 𝐵𝐵 and conversely 𝑃𝑃−1𝐵𝐵𝐵𝐵 = 𝐴𝐴 
• If nxn matrices A and B are similar, then they have the same characteristic polynomial 

and hence the same eigenvalues with the same multiplicities  
• Similarity is not the same thing as row equivalence – performing row operations on a 

matrix usually changes its eigenvalues  
 

Section 3: Diagonalization 
 

• A is diagonoalizable if it is similar to a diagonal matrix D: 𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑃𝑃−1 
• An nxn matrix is diagonalizeable iff it has n linearly independent eigenvectors 
• The columns of P are eigenvectors of A; the diagonal entries of D are the eigenvalues 

corresponding to the order in P 
• An nxn matrix A is diagonalizable iff there are enough eigenvectors to form an 

eigenvector basis of ℝ𝑛𝑛 
• An nxn matrix with n distinct eigenvalues is diagonalizable 
• For matrices whose eigenvalues are not distinct: an nxn matrix A is diagonalizable iff the 

sum of the dimensions of the eigenspaces of its eigenvalues equals n (so if the 
dimensions of the eigenspaces are equal to the multiplicity of their eigenvalues in the 
characteristic equation) 

 
Section 4: Eigenvectors and Linear Transformations 

 
• [𝑇𝑇(𝑥𝑥)]𝐶𝐶 = 𝑀𝑀[𝑥𝑥]𝛽𝛽 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑀𝑀 = [ [𝑇𝑇(𝑏𝑏1)]𝐶𝐶  [𝑇𝑇(𝑏𝑏2)]𝐶𝐶 … [𝑇𝑇(𝑏𝑏𝑛𝑛)]𝐶𝐶  ] ; M is the matrix for T 

relative to β or  β-matrix for T 
• Suppose 𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑃𝑃−1 where D is a diagonal nxn matrix. If β is the basis for ℝ𝑛𝑛 formed 

from the columns of P, then D is the β-matrix for the transformation x  Ax 
 

Section 5: Complex Eigenvalues  
 

• A complex scalar λ satisfies det(A -  λI) = 0 iff there is a nonzero vector in ℂ𝑛𝑛 such that 
Ax =  λx; λ is a complex eigenvalue and x is a complex eigenvector  

• The real and imaginary parts of a complex vector x are the vectors Re x and Im x in ℝ𝑛𝑛 
formed from the real and the imaginary parts of the entries of x 

• When A is real, its complex eigenvalues occur in conjugate pairs (a ± bi) 



• Let A be a real 2x2 matrix with a complex eigenvalue λ = a – bi (b≠0) and an associated 
eigenvector v in ℂ2. Then, A= 𝑃𝑃𝑃𝑃𝑃𝑃−1 where P = [ Re(v) Im(v) ] and 𝐶𝐶 = �𝑎𝑎 −𝑏𝑏

𝑏𝑏 𝑎𝑎 � 
 

Chapter 6: Orthogonality and Least Squares (sections 1,2,3,4,5,6,7) 
 

Section 1: Inner Product, Length, and Orthogonality 
 

• The number 𝑢𝑢𝑇𝑇𝑣𝑣 is called the inner product (or dot product) of u and v. 

[ 𝑢𝑢1  𝑢𝑢2 …  𝑢𝑢𝑛𝑛] �

 𝑣𝑣1
 𝑣𝑣2
⋮

 𝑣𝑣𝑛𝑛

� =   𝑢𝑢1 𝑣𝑣1 +   𝑢𝑢2 𝑣𝑣2 + ⋯+  𝑢𝑢𝑛𝑛 𝑣𝑣𝑛𝑛 

• Properties of the inner product: 
o 𝑢𝑢 ∙ 𝑣𝑣 = 𝑣𝑣 ∙ 𝑢𝑢 
o (𝑢𝑢 + 𝑣𝑣) ∙ 𝑤𝑤 = 𝑢𝑢 ∙ 𝑤𝑤 + 𝑣𝑣 ∙ 𝑤𝑤 
o (𝑐𝑐𝑐𝑐) ∙ 𝑣𝑣 = 𝑐𝑐(𝑢𝑢 ∙ 𝑣𝑣) = 𝑢𝑢 ∙ (𝑐𝑐𝑐𝑐) 
o 𝑢𝑢 ∙ 𝑢𝑢 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢 ∙ 𝑢𝑢 = 0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑢𝑢 = 0 

• The length (or norm) of v is the nonnegative scalar ||v|| defined by 
�|𝑣𝑣|� = �(𝑣𝑣1)2 + (𝑣𝑣2)2 + ⋯+ (𝑣𝑣𝑛𝑛)2 and �|𝑣𝑣|�

2
= 𝑣𝑣 ∙ 𝑣𝑣 

• �|𝑐𝑐𝑐𝑐|�=|𝑐𝑐|�|𝑣𝑣|� 
• A unit vector is a vector of length one; to normalize a vector, divide it by its norm 
• For u and v in ℝ𝑛𝑛 the distance between u and v is the length of the vector u – v: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢, 𝑣𝑣) = �|𝑢𝑢 − 𝑣𝑣|�  
• Two vectors u and v in ℝ𝑛𝑛 are orthogonal to each other if 𝑢𝑢 ∙ 𝑣𝑣 = 0 
• Pythagorean theorem: two vectors are orthogonal iff �|𝑢𝑢 + 𝑣𝑣|�

2
= �|𝑢𝑢|�

2
+ �|𝑣𝑣|�

2
  

• If a vector v is orthogonal to every vector in a subspace W, then it is orthogonal to W 
• The set of all vectors orthogonal to a subspace W is called the orthogonal component of 

W and is denoted by 𝑊𝑊⊥ 
• A vector x is in 𝑊𝑊⊥ if it is orthogonal to every vector in a set that spans W 
• 𝑊𝑊⊥ is a subspace of ℝ𝑛𝑛 
• Let A be an mxn matrix. Orthogonal component of the row space of A is the null space of 

A and the orthogonal component of the column space of A is the null space of 𝐴𝐴𝑇𝑇 
• In ℝ2 and ℝ3: 𝑢𝑢 ∙ 𝑣𝑣 = �|𝑢𝑢|��|𝑣𝑣|� cos 𝜃𝜃 

 
Section 2: Orthogonal Sets 

 
• A set of vectors {𝑢𝑢1 …𝑢𝑢𝑝𝑝} is an orthogonal set in ℝ𝑛𝑛 if each pair of distinct vectors from 

the set is orthogonal: 𝑢𝑢𝑖𝑖 ∙ 𝑢𝑢𝑗𝑗 = 0  whenever i≠j 
• If S = {𝑢𝑢1 …𝑢𝑢𝑝𝑝} is a set of orthogonal nonero vectors in ℝ𝑛𝑛 then S is linearly independent 

and hence is a basis for the subspace spanned by S 
• An orthogonal basis for a subspace W of ℝ𝑛𝑛 is a basis that is also an orthogonal set  



• Let {𝑢𝑢1 …𝑢𝑢𝑝𝑝}  be an orthogonal basis for a subspace W of of ℝ𝑛𝑛. For each y in W, the 
weights of the linear combination 𝑦𝑦 = 𝑐𝑐1𝑢𝑢1 + ⋯+ 𝑐𝑐𝑝𝑝𝑢𝑢𝑝𝑝 are given by 𝑐𝑐𝑗𝑗 = 𝑦𝑦∙𝑢𝑢𝑗𝑗

𝑢𝑢𝑗𝑗∙𝑢𝑢𝑗𝑗
 

• A vector y in ℝ𝑛𝑛 can be written as the sum of a multiple of a vector u and an orthogonal 
component to u 𝑦𝑦 = 𝑦𝑦� + 𝑧𝑧. The vector 𝑦𝑦� is called the orthogonal projection of y onto u 
and the vector z is called the component of y orthogonal to u 

• A projection is determined by the subspace L spanned by u; 𝑦𝑦� = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑦𝑦 = 𝑦𝑦∙𝑢𝑢
𝑢𝑢∙𝑢𝑢

𝑢𝑢 
• A set of vectors {𝑢𝑢1 …𝑢𝑢𝑝𝑝} is an orthonormal set if it is an orthogonal set of unit vectors. 

If W is spanned by such a set, then {𝑢𝑢1 …𝑢𝑢𝑝𝑝} is an orthonormal basis for W 
• An mxn matrix U has orthonormal columns iff 𝑈𝑈𝑇𝑇𝑈𝑈 = 𝐼𝐼 
• Let U be an mxn matrix with orthonormal columns and let y and x be in ℝ𝑛𝑛. Then,  

o �|𝑈𝑈𝑈𝑈|� = �|𝑥𝑥|� 
o (𝑈𝑈𝑈𝑈) ∙ (𝑈𝑈𝑈𝑈) = 𝑥𝑥 ∙ 𝑦𝑦 
o (𝑈𝑈𝑈𝑈) ∙ (𝑈𝑈𝑈𝑈) = 0 iff 𝑥𝑥 ∙ 𝑦𝑦 = 0 

• An orthogonal matrix is a square invertible matrix U such that 𝑈𝑈−1 = 𝑈𝑈𝑇𝑇. Such a matrix 
has orthonormal columns and orthonormal rows. 

 
Section 3: Orthogonal Projections  

 
• The Orthogonal Decomposition Theorem: 

o Let W be a subspace of ℝ𝑛𝑛. Then each y in ℝ𝑛𝑛 can be written uniquely in the 
form 𝑦𝑦 = 𝑦𝑦� + 𝑧𝑧 where 𝑦𝑦� is in W and z is orthogonal to W. In fact, if {𝑢𝑢1 …𝑢𝑢𝑝𝑝}  is 
any orthogonal basis of W, then 𝑦𝑦� = 𝑦𝑦∙𝑢𝑢1

𝑢𝑢1∙𝑢𝑢1
𝑢𝑢1 + ⋯+ 𝑦𝑦∙𝑢𝑢𝑝𝑝

𝑢𝑢𝑝𝑝∙𝑢𝑢𝑝𝑝
𝑢𝑢𝑝𝑝 and z = y-𝑦𝑦� 

• 𝑦𝑦� is the orthogonal projection of y onto W 
• If {𝑢𝑢1 …𝑢𝑢𝑝𝑝} is an orthonormal basis, then 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑦𝑦 = (𝑦𝑦 ∙ 𝑢𝑢1)𝑢𝑢1 + ⋯+ �𝑦𝑦 ∙ 𝑢𝑢𝑝𝑝�𝑢𝑢𝑝𝑝; if U = 

[ 𝑢𝑢1 …𝑢𝑢𝑝𝑝 ] then 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑦𝑦 = 𝑈𝑈𝑈𝑈𝑇𝑇𝑦𝑦 for all y in ℝ𝑛𝑛 
 

Section 4: The Gram-Schmidt Process 
 

• Gram-Schmidt is used to derive an orthogonal basis for a subspace from a given non-
orthogonal basis 

• Given a basis �𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑝𝑝� for a nonzero subspace W of ℝ𝑛𝑛  
o 𝑣𝑣1 = 𝑥𝑥1 
o 𝑣𝑣2 = 𝑥𝑥2 −

𝑥𝑥2∙𝑣𝑣1
𝑣𝑣1∙𝑣𝑣1

𝑣𝑣1 

o 𝑣𝑣3 = 𝑥𝑥3 −
𝑥𝑥3∙𝑣𝑣1
𝑣𝑣1∙𝑣𝑣1

𝑣𝑣1 −
𝑥𝑥3∙𝑣𝑣2
𝑣𝑣2∙𝑣𝑣2

𝑣𝑣2 
o … 
o 𝑣𝑣𝑝𝑝 = 𝑥𝑥𝑝𝑝 −

𝑥𝑥𝑝𝑝∙𝑣𝑣1
𝑣𝑣1∙𝑣𝑣1

𝑣𝑣1 − ⋯− 𝑥𝑥𝑝𝑝∙𝑣𝑣𝑝𝑝−1
𝑣𝑣𝑝𝑝−1∙𝑣𝑣𝑝𝑝−1

𝑣𝑣𝑝𝑝−1 

o Then �𝑣𝑣1 𝑣𝑣2 … 𝑣𝑣𝑝𝑝� is an orthogonal basis for W 
 
 
 
 



Section 5: Least-Squares Problems  
 

• If A is mxn and b is in ℝ𝑚𝑚, a least-squares solution of Ax=b is an 𝑥𝑥� in ℝ𝑛𝑛 such that 
�|𝑏𝑏 − 𝐴𝐴𝑥𝑥�|� ≤ �|𝑏𝑏 − 𝐴𝐴𝐴𝐴|� for all x in ℝ𝑛𝑛 

• The set of least-squares solutions of Ax=b coincides with the nonempty set of solutions 
of the normal equation 𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 = 𝐴𝐴𝑇𝑇𝑏𝑏  

• 𝑥𝑥� = (𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝐴𝐴 
• The distance from b to A𝑥𝑥� is called the least-squares error of this approximation 

 
Section 6: Applications to Linear Models 

 
• Least-squares lines: 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 (x and y from experimental data) 

 
 

Chapter 7: Symmetric Matrices and Quadratic Forms  
 

Section 1: Diagonalization of Symmetric Matrices  
 

• A symmetric matrix is a matrix such that 𝐴𝐴 = 𝐴𝐴𝑇𝑇 
• If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal 
• An nxn matrix A is orthogonally diagonalizable (𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 = 𝑃𝑃𝑃𝑃𝑃𝑃−1) iff A is a 

symmetric matrix  
• Spectral theorem for symmetric matrices: an nxn symmetrix matrix A has the 

following properties: 
o A has n real eigenvalues, counting multiplicities 
o The dimension of the eigenspace of each eigenvalue equals its multiplicity as a 

root of the characteristic equation 
o The eigenspaces are mutually orthogonal (eigenvectors corresponding to different 

eigenvalues are orthogonal 
o A is orthogonally diagonalizable 

 
 

  



True/False Review 
 

Chapter 1 
 

(k) If A is an m×n matrix and the equation Ax=b is consistent for every b in ℝ𝑚𝑚, then A has m  
      pivot columns:  
      TRUE – for Ax=b to be consistent for every b there needs to be a pivot in       
      every row 
 
(o) If A is an m×n matrix, of the equation Ax=b has at least two different solutions, and if the  
     equation Ax=c is consistent, then Ax=c has many solutions:  
     TRUE – the two are translations of one another, have the same number of solutions (so, many  
     solutions) 
 
(u) If u, v, and w are nonzero vectors in ℝ2, then w is a linear combination of u and v:  
     FALSE – if u and v are multiples of one another, w will not be a linear combination of u & v 
 
(w) Suppose that 𝒗𝒗𝟏𝟏, 𝒗𝒗𝟐𝟐, and 𝒗𝒗𝟑𝟑 are in ℝ5, 𝒗𝒗𝟐𝟐 not a multiple of 𝒗𝒗𝟏𝟏, and 𝒗𝒗𝟑𝟑 is not a linear  
      combination of 𝒗𝒗𝟏𝟏 and 𝒗𝒗𝟐𝟐. Then, {𝒗𝒗𝟏𝟏,𝒗𝒗𝟐𝟐,𝒗𝒗𝟑𝟑}  is linearly independent 
      FALSE – if one of the vectors is the zero vector, the set would be linearly dependent by  
      definition  
 
(z) If A is an m×n matrix with m pivot columns, then the linear transformation xAx is one-to- 
     one: 
     FALSE – for the transformation to be one-to-one, the standard matrix needs to have a pivot in  
     every column. In this case, it has a pivot in every row, which means that it would be one-to- 
     one only if m=n 
 

Chapter 2 
 

(b) If AB=C and C has 2 columns, then A has 2 columns.  
     False: C will have the same number of rows as A and the same number of columns as B 
 
(c) Left-multiplying a matrix B by a diagonal matrix A with nonzero entries on the diagonal,  
     scales the rows of B 
     True: each row of A will only have one nonzero entry in each row and that entry will scale  
     the rows of B 
 
(e) If AC = 0, then either A = 0 or C = 0 
     False: a row vector and a column vector can have nonzero entries and still give zero as a      
     result of multiplication (for instance, row vector [1 1] and column vector [1 -1] ) 
 
(f) If A and B are nxn, then (A + B) (A – B) = 𝐴𝐴2 − 𝐵𝐵2 
     False: (𝐴𝐴 + 𝐵𝐵)(𝐴𝐴 − 𝐵𝐵) = 𝐴𝐴2 − 𝐵𝐵2 − 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵; since matrix multiplication is NOT  
     commutative, AB ≠ BA 
 



(l) If AB = I, then A is invertible 
     False: this statement does not specify whether or not A is a square matrix. There could be a  
     case where A is an nxm matrix and B is an mxn matrix, and their product results in the  
     identity matrix. Only square matrices can be invertible. 
 
(m) If A and B are square and invertible, then AB is invertible, and (𝐴𝐴𝐴𝐴)−1 = 𝐴𝐴−1𝐵𝐵−1 
      False: this statement does not state that A and B are the same size (could be nxn and mxm in  
      which case their multiplication would not make any sense). Even if we assume that A and be  
      have the same size, (𝐴𝐴𝐴𝐴)−1 = 𝐵𝐵−1𝐴𝐴−1, in reverse order of what was stated 
 
(n) If AB = BA and if A is invertible, then 𝐴𝐴−1𝐵𝐵 = 𝐵𝐵𝐴𝐴−1 
      True: take AB = BA and multiply both sides on the left by 𝐴𝐴−1, getting B = 𝐴𝐴−1 BA. Then  
      multiply on the right by 𝐴𝐴−1 which gives you B𝐴𝐴−1 = 𝐴𝐴−1B 
 

(p) If A is a 3 x 3 matrix and the equation Ax = �
1
0
0
� has a unique solution, then A is invertible. 

     True: for the system to have a unique solution, the homogeneous case Ax=0 must only have  
     one solution, which means that there is a pivot in every row of the matrix A. As a result, the  
     matrix is invertible. 
 

Chapter 3 
 
(a) If A is a 2x2 matrix with a zero determinant, then one column of A is a multiple of the other 
     True: a zero determinant implies that the matrix is not invertible, which means that its      
     columns are linearly dependent. 
 
(c) If A is a 3x3 matrix, then det 5A = 5 det A 
     False: det 5A means that every row of A is multiplied by 5. Recall the rule that if one row of  
     A is multiplied by k to get matrix B, then k detA=detB. This means that det 5A = 125 det A 
 
(g) If B is produced by multiply row 3 of A by 5, then det B = 5 det A 
     True: if one row of A is multiplied by k to get matrix B, then det B = k det A 
 
(i) det𝐴𝐴𝑇𝑇 = −det𝐴𝐴 
     False: det𝐴𝐴𝑇𝑇 = det𝐴𝐴 
 
(k) det𝐴𝐴𝑇𝑇𝐴𝐴 ≥ 0 
      True: det𝐴𝐴𝑇𝑇 𝐴𝐴 = det𝐴𝐴𝑇𝑇 det𝐴𝐴; now recall that det𝐴𝐴𝑇𝑇 = det𝐴𝐴, which means that 
      det𝐴𝐴𝑇𝑇𝐴𝐴 = (det𝐴𝐴)2. If A is not invertible, detA = 0. If A is invertible, (det𝐴𝐴)2 > 0 
 
(l) Any system of n linear equations in n variables can be solved by Cramer’s rule 
     False: Cramer’s rule can only be applied if the nxn matrix of the system is invertible; in other  
     words, the system of linear equations must form a linearly independent set 
 
 



(n) If 𝐴𝐴3 = 0, then det A = 0 
     True: det𝐴𝐴3 = det 0 = 0; since det𝐴𝐴𝐴𝐴 = det𝐴𝐴 det𝐵𝐵, we can say that det𝐴𝐴3 = (det𝐴𝐴)3  
     and since det𝐴𝐴3 = 0, det A = 0 
 
(p) If A is invertible, then (det𝐴𝐴)(det𝐴𝐴−1) = 1 
     True: det𝐴𝐴−1 = 1

det 𝐴𝐴
 

 
Chapter 4 

 
(a) The set of all linear combinations of 𝑣𝑣1 …𝑣𝑣𝑝𝑝 is a vector space 
      True: such set constitutes Span {𝑣𝑣1 … 𝑣𝑣𝑝𝑝} 
 
(c) For S={𝑣𝑣1 … 𝑣𝑣𝑝𝑝}, if {𝑣𝑣1 … 𝑣𝑣𝑝𝑝−1} is linearly independent, then so is S 
     False: 𝑣𝑣𝑝𝑝 could be a linear combination of its preceding vectors in which case S is not  
     linearly independent 
 
(f) For vector space V and subspace S={𝑣𝑣1 … 𝑣𝑣𝑝𝑝}, if dim V = p and Span S = V, then S cannot be  
     linearly dependent 
     True: since S (which has p components) spans the p-dimensional vector space V,  all the  
     vectors in the set S must be linearly independent  because in order to span V, S has to have p  
     linearly independent components 
 
(h) The nonpivot columns of a matrix are always linearly dependent 
     False: there could be nonpivot columns that are linearly independent 
 
(j) Row operations on a matrix can change its null space 
     False: row operations on A do not change the solutions to Ax=0 
 
(l) If an mxn matrix A is row equivalent to an echelon matrix U, and if U has k nonzero rows,  
    then the dimension of the solution space of Ax=0 is m-k 
    False: if U has k nonzero rows, rank A = k. We know that rank A + dim Nul A = n, NOT m;  
    therefore, the dimension of the null space of A equals n-k 
 
(q) If A is mxn and rank A = m, then the linear transformation xAx is one-to-one 
     False: to be one to one, rank A would need to be n (number of columns), not m (number of  
     rows) – in matrix form, a pivot in every column 
 
(r) If A is mxn and the linear transformation xAx is onto, then rank A = m 
     True: for the transformation to be onto, rank A must be the number of rows, m (in matrix  
     form, a pivot in every row) 
 
(s) A change-of-coordinates matrix is always invertible 
     True: since the columns of the change-of-coordinates matrix are basis vectors, they are by  
     definition linearly independent which means that the matrix is square has a pivot in every row  
     and column, meaning that the matrix is invertible. 



Chapter 5 
 

(a) If A is invertible and 1 is an eigenvalue of A, then 1 is also an eigenvalue of 𝐴𝐴−1 
     True: if Ax=1x and we left-multiply both sides by 𝐴𝐴−1, we get 𝐴𝐴−1x = 1x which means that 1  
     is an eigenvalue of 𝐴𝐴−1 
 
(b) If A is row equivalent to the identity matrix I, then A is diagonalizable 
     False: being row equivalent to the identity matrix makes a matrix invertible; not all invertible  
     matrices are diagonalizable. 
 
(c) If A contains a row or column of zeroes, then 0 is an eigenvalue for A 
     True: if A contains a row or column of zeroes, it is not invertible and all noninvertible  
     matrices have zero as an eigenvalue 
 
(e) Each eigenvector of A is also an eigenvector of 𝐴𝐴2 
     True: If given Ax = λx, left multiplying both sides by A we get 𝐴𝐴2x = λAx which then  
     follows as 𝐴𝐴2x = λ2x. This means that x is an eigenvector for both A and 𝐴𝐴2 
 
(i) Two eigenvectors corresponding to the same eigenvalue are always linearly dependent 
     False: an eigenvalue with a multiplicity greater than zero could have several linearly  
     independent eigenvectors 
 
(l) The sum of two eigenvectors of a matrix A is also an eigenvector of A 
     False: the sum of two eigenvectors generally is not an eigenvector 
 
(n) The matrices A and 𝐴𝐴𝑇𝑇 have the same eigenvalues, counting multiplicities 
     True: matrices A and 𝐴𝐴𝑇𝑇 have the same characteristic equation 
 
(q) If A is diagonalizable, then the columns of A are linearly independent 
      False: if columns of A are linearly independent, the matrix is invertible; a matrix does not  
      have to be invertible to be diagonalizable 
 
(x) If A is an nxn diagonalizable matrix, then each vector in ℝ𝑛𝑛 can be written as a combination  
     of eigenvectors of A 
     True: since A is diagonalizable, its eigenvectors form an eigenbasis for ℝ𝑛𝑛 
 

Chapter 6 
 

(f) If x is orthogonal to both u and v, then x must be orthogonal to u-v 
    True: if xu=0 and xv=0, then xu-xv=0 and x(u-v)=0 meaning that x is orthogonal to u-v 
 
(h) If �|𝑢𝑢 − 𝑣𝑣|�

2
= �|𝑢𝑢|�

2
+ �|𝑣𝑣|�

2
 then u and v are orthogonal 

     True: the Pythagorean Theorem states that u and v are orthogonal if 
    �|𝑢𝑢 + 𝑣𝑣|�

2
= �|𝑢𝑢|�

2
+ �|𝑣𝑣|�

2
; in the case given, v is replaced with (-v) and �|−𝑣𝑣|�

2
= �|𝑣𝑣|�

2
 

 



(j) If a vector y coincides with its orthogonal projection onto a subspace W then y is in W 
    True: the orthogonal projection of y onto W is always in W so y is in W 
 
(k) The set of all vectors in ℝ𝑛𝑛 orthogonal to one fixed vector is a subspace of ℝ𝑛𝑛 
     True 
 
(n) If a matrix U has orthonormal columns, then 𝑈𝑈𝑈𝑈𝑇𝑇 = 𝐼𝐼 
     False: this would be true if the matrix was square 
 
(o) A square matrix with orthogonal columns is an orthogonal matrix 
     False: the columns of an orthogonal matrix are orthonormal 
 
(p) If a square matrix has orthonormal columns, then it also has orthonormal rows 
     True: orthogonal matrices have orthonormal columns and rows 
 
(q) If W is a subspace, then �|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑣𝑣|�

2
+ �|𝑣𝑣 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑣𝑣|�

2
= �|𝑣𝑣|�

2
 

     True: 𝑣𝑣 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑣𝑣 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑣𝑣 are orthogonal so the given statement is the Pythagorean  
     Theorem 
 

Chapter 7 
 

(a) If A is orthogonally diagonalizable, then it is symmetric 
     True: only symmetric matrices are orthogonally diagonalizable 
 
(c) If A is an orthogonal matrix, then ||Ax||=||x|| for all x in ℝ𝑛𝑛 
     True: an orthogonal matrix has orthogonal unit vectors as columns so ||Ax||=||x|| 
 
(e) If A is an nxn matrix with orthogonal columns, then 𝐴𝐴𝑇𝑇 = 𝐴𝐴−1 
     False: for that to happen, the matrix needs to have orthonormal columns 


