
Math 113 Notes–Spring 2015

Davis Foote

March 12, 2015

Day 1 : 01/20/15

Relation on a set
Formally, a subset of S × S.

Functions
f : A→ B
Each element in A is sent to exactly one element of B
Domain: A
Codomain: B
Range: {f(a) : a ∈ A}
1− 1 = Injective : f(x1) = f(x2) =⇒ x1 = x2
onto = Surjective : codomain = range, i.e. ∀b ∈ B, ∃a ∈ A : f(a) = b
both = bijective
Cardinality : Two sets have the same cardinality iff there exists a bijection between them

Partition
disjoint union of non-empty cells (subsets of S) which cover all of S.

Equivalence Relation on S A relation with three properties:
1. Reflexive: x ∼ x∀x ∈ S
2. Symmetric: x ∼ y =⇒ y ∼ x
3. Transitive: x ∼ y ∧ y ∼ z =⇒ x ∼ z

Key example: integers mod n: Zn
Define an equivalence relation on Z by a ∼ b if a− b is divisible by 4.
Equivalence classes:
0̄ = {. . . ,−4, 0, 4, 8, . . .}
1̄ = {. . . ,−3, 1, 5, 9, . . .}
2̄ = {. . . ,−2, 2, 6, 10, . . .}
3̄ = {. . . ,−1, 3, 7, 11, . . .}
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Binary operation on a set S
how to combine 2 elements of S to get another element of set S
Formally, a map from S × S → S.
Two properties that they may have:
Commutativity: a ∗ b = b ∗ a
Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c
Thm: Function composition is associative (proof in book)

nth roots of unity
complex solutions to zn = 1
Evenly spaced around the unit circle and 1 is a root of unity for all n.
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Day 2 : 01/22/15

〈U, ·〉 ∼= 〈R2π,+〉
〈Un, ·〉 ∼= 〈Zn,+〉

〈{1,−1}, ·〉 ∼= 〈Z2,+〉

Homomorphism Property (for a set with a binary operation):
If φ : 〈S, ∗〉 → 〈S′, ∗′〉, then φ is a homomorphism if

φ(a ∗ b) = φ(a) ∗′ φ(b)

An isomorphism is a bijective homomorphism.

To prove that two sets under their respective binary operations are isomorphic,

1. Define some φ : S → S′

2. Check that φ is one-to-one

3. Check that φ is onto

4. Check that φ satisfies the homomorphism property

Structural Properties: If 〈S, ∗〉 has structural property P , then any 〈S′, ∗′〉 which is
isomorphic to 〈S, ∗〉 must also have property P .

Examples of Structural Properties

• Cardinality

• There exists an identity element e such that e ∗ x = x and x ∗ e = x

• Commutativity

• There exists an element x with x ∗ x = x
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Day 3 : 01/27/15

Def: A group is a set G that is closed under a binary operation ∗ such that:

• ∗ is associative : ∀a, b, c ∈ G : a ∗ (b ∗ c) = (a ∗ b) ∗ c

• There exists an identity e ∈ G : ∀g ∈ G : g ∗ e = e ∗ g = g

• All elements have inverses: ∀g ∈ G, ∃g−1 ∈ G : g ∗ g−1 = g−1 ∗ g = e

Examples:

• 〈Z,+〉

– identity = 0

– inverse of g is −g
* Could replace Z with Q,R, or C

• 〈Q∗, ·〉 where Q∗ = Q {0}

– identity = 1

– inverse of g is 1
g

* Could replace Q∗ with R∗ or C∗

• 〈Un, ·〉

– identity = 1

– inverse of e
2πi
n = e−

2πi
n

• 〈Zn,+〉

– identity = 0̄

– inverse of ḡ = ¯n− g = −̄g

• 〈{f : R→ R},+〉

– identity = f(x) = 0∀x
– inverse of f(x) is −f
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Def: A group is abelian if its binary operation is commutative. All examples given so far
are abelian.

A non-abelian example is matrix multiplication:

〈{invertible n× n matrices},matrix multiplication〉

A,B invertible, so A−1, b−1 exist. Inverse of AB is B−1A−1, so closed under multiplication.

Another name for this group is GL(n,R), i.e. general linear group

Thm (cancellation laws): If G is a group and a, b, c ∈ G such that a ∗ b = a ∗ c or
b ∗ a = c ∗ a, then b = c.
Proof: Suppose b ∗ a = c ∗ a. Since G is a group, a has an inverse, a−1.

(b ∗ a) ∗ a−1 = (c ∗ a) ∗ a−1

b ∗ (a ∗ a−1) = c ∗ (a ∗ a−1)
b ∗ e = c ∗ e

b = c

Thm: If G is a group and a, b ∈ G, then any equation of the form ax = b or xa = b has a
unique solution.
Proof: Suppose a ∗ x = b.

a−1 ∗ (a ∗ x) = a−1 ∗ b
(a−1 ∗ a) ∗ x = a−1 ∗ b

e ∗ x = a−1 ∗ b
x = a−1 ∗ b

So there exists at least one solution.
Suppose there are two solutions x1, x2 such that a∗x1 = b and a∗x2 = b. Then a∗x1 = a∗x2
and by the cancellation laws x1 = x2, so there is at most one solution.

Note: Don’t need to read about semigroups, monoids, left/right inverses for class

Note: In a group table, each element of G will appear in each row and column exactly
once.
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Day 4 : 01/29/15

Def:
Let G be a group. Then H is a subgroup of G if

(1) H is a subset of G

(2) H is closed under G’s operation. h1 ∗ h2 ∈ H∀h1, h2 ∈ H

(3) H contains G’s identity

(4) Inverses: If h ∈ H, then h−1 ∈ H

Alternatively, H ⊆ G, H 6= ∅, and ∀a, b ∈ H, ab−1 ∈ H.
In short, H is a subset of G that is also a group using the same operation.

Def:
A cyclic subgroup of G generated by g ∈ G is denoted 〈g〉.

〈g〉 = {gn|n ∈ Z}
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Day 5 : 02/03/15

f : Z12 → U12

k̄ 7→
(
e

2πi
12

)2k

This map is well-defined because

f(k̄) =
(
e

2πi
12

)2k
=

(
e

2πi
12

)2k
·
(
e

2πi
12

)12n
= f(k + 6n)

f : Q→ Q
a

b
7→ a

Not a well-defined map because

1

2
=

2

4
but f

(
1

2

)
= 1, f

(
2

4

)
= 2

Standard operations:

• For Z,Zn,R,Q, default is +

• For R∗,Q∗, GL(n,R),Z∗n, Un, U , default is ·

Def: A group is cyclic if there exists g ∈ G such that G = 〈g〉
Def: The order of a group is how many elements a group G has. It is ∞ if G is infinite,
n if G has n elements.
Def: The order of g ∈ G is the order of 〈g〉

Theorem: Every cyclic group is abelian.
Proof: Let G be a cyclic group with a generator g, i.e. G = 〈g〉 = {gn : n ∈ Z}. Let
x, y ∈ G. Then x = ga, y = gb for some a, b ∈ Z. xy = gagb = ga+b = gb+a = gbga = yx.

Theorem: A subgroup of a cyclic group is cyclic.
Proof: If H = {e}, H = 〈e〉. If H ≥ {e}, then H has at least one gn ∈ H, where n ∈ Z+.
Let m be the smallest positive integer such that gm ∈ H. Let gn ∈ H. If n is a multiple of
m, then n = mk for some k ∈ Z, so gn = (gm)k. If n is not a multiple of m, show that m
could not have been the smallest positive integer so gm ∈ Z. Use mod math.
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Classification of Cyclic Groups
If G is a cyclic group, then G is isomorphic to one of the following:

• G ∼= Z if G is infinite

• G ∼= Zn if |G| = n

Let G be a cyclic group of order n. G = 〈g〉. If H ≤ G with H =
〈
gk
〉
, how big is H?

Find gcd(k, n), call it d. Then H =
〈
gd
〉
, which has n

d elements.

The number of generators of a cyclic group G of size n is φ(n)
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Day 6 : 2/05/15

Symmetric Groups

Def: A permutation of a set A is a bijection A → A. Informally a reordering of the
elements of A.
[5] = {1, 2, 3, 4, 5}

Two-line notation:

(
1 2 3 4 5
4 1 3 5 2

)
One-line notation: only write the second line. No parentheses.

Def: The symmetric group SA on set A is the set of all permutations of A with the
binary operation function composition. SA is a group because

• Function composition is associative

• Identity permutation is σ(a) = a for all a ∈ A

• Inverse of τ exists because permutations are bijective

• Closed under composition. If τ : A→ A and σ : A→ A, then τ ◦ σ : A→ A.

SA is not abelian when |A| ≥ 3.

Theorem: If |A| = |B|, then SA ∼= SB.

Dihedral Groups

Dn is the symmetry group of a regular n-gon. In Dn, let r be the smallest rotation
counterclockwise (i.e. 2π

n radians) and let s be reflection through the line containing 1 and
the center.

Dn = {e, r, . . . , rn−1, s, sr, . . . , srn−1}

They satisfy these rules:

• rn = e

• s2 = e

• rs = sr−1
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Day 7 : 2/10/15

Permutations - Notation

• Disjoint cycle notation

Cycle notation built on orbits. If A is a set, σ ∈ SA, then a, b ∈ A are in the same
orbit if and only if b = σn(a) for some n. This is an equivalence relation:

– b = σ0(b), so b ∼ b
– b = σn(a) =⇒ a = σ−n(b) = a

– b = σn(a), c = σk(b) =⇒ c = σn+k(b)

Look up ”group actions”

Conventions:

– Write the smallest element first in an orbit.

– Don’t bother writing singletons

– Disjoint cycles

Fact: Disjoint cycles commute. What if the cycles are not disjoint? Keep simplifying
until they are.

(5, 1, 2)(1, 6, 3, 4)(2, 7)(1, 5, 6) = (1)(2, 7, 5, 3, 4)(6) = (2, 7, 5, 3, 4)

Remember to work from right to left. Permutation multiplication is composition of
functions.

• Product of transpositions

A transposition is a cycle of length 2 (swaps two things).

(a1, a2, . . . , an) = (a1, an)(a1, an−1) . . . (a1, a3)(a1, a2)
i.e. any cycle can be written as a product of transpositions.

A given permutation can be written using different numbers of transpositions, but
that number is either always odd or always even. We use this to classify even and
odd permutations.

Cycles of odd lengths are even transpositions and vice-versa.

Theorem: In Sn, the subset of even permutations forms a subgroup of order n!
2 .

Proof: Normal subgroup proof. Size is shown because there is a bijection with odd
permutations: σ 7→ (1, 2)σ.

This group is called An, the alternating group.
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Day 8 : 2/12/15

Lagrange’s Theorem

If G is a finite group and H ≤ G, then |H| divides |G|.

Proof:

1. Know what cosets are

2. Show the cosets of H partition G

3. Show every coset has the same size as H.

4. Count |G| = (size of coset)·(number of cosets)

5. Conclude that |G| = |H|·(number of cosets of H)

• Proof for 1 and 2:

Define a relation ∼L where a ∼L b means a, b are in the same coset by a ∼L b iff
a−1b ∈ H. ∼L is an equivalence relation because:

– a ∼L a because a−1a = e ∈ H.

– a ∼L b implies a−1b ∈ H. (a−1b)−1 = b−1a ∈ H since H is a group. So b ∼L a.

– a ∼L b and b ∼L c implies a−1b, b−1c ∈ H.
Since H is a group, (a−1b)(b−1c) = a−1c ∈ H.

• Proof for 3:

The left cosets of H look like aH = {ah : h ∈ H}. Claim: |H| = |aH| ∀a ∈ G.
Clearly |aH| ≤ |H|. The ahi are all different because if ahi = ahj then hi = hj but
hi 6= hj so ahi are different. So |H| ≤ |aH| and therefore |aH| = |H|.
Side note: Right cosets. Ha = {ha : h ∈ H}. In general, aH 6= Ha. Frequently we
get different left and right coset partitions, but when G is abelian, they are always
the same.

Corollary 1 to Lagrange’s Theorem: If |G| is a prime p, then G is cyclic.
Proof: Let g ∈ G with g 6= e. How big is 〈g〉? The only choices are 1 and p, and it’s not 1
because it has at least e and g in it. So | 〈g〉 | = p and 〈g〉 = G.

Another statement of Lagrange’s Theorem: If G is finite with order n, then the order of
an element in G divides n.
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Def: the index of H in G where H ≤ G is the number of cosets of H in G. Notation is
G : H.

Theorem: If G is finite and K ≤ H ≤ G, then (G : K) = (G : H)(H : K). Proof: By

Lagrange’s Theorem, when G is finite, |G||K| = |G|
|H| ·

|H|
|K| . Also true when G is infinite but I

guess we’re not getting into that now.
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Day 9 : 2/24/15

Products of groups

Def: The Cartesian product of sets A and B is A × B = {(a, b) : a ∈ A, b ∈ B}. We
can take any finite product.

Def: The internal direct product of two groups G and H is the set G ×H under the
operation (g1, h1)(g2, h2) = (g1g2, h1h2).

Proof that G×H is a group:

• Each component is associative

• Identity is (eG, eH)

• Inverse of (g, h) is (g−1, h−1)

• Closed: (g1, h1)(g2, h2) = (g1g2, h1h2) ∈ G×H

Theorem: Zm × Zn ∼= Zmn if and only if gcd(m,n) = 1.
Proof: Let gcd(m,n) = 1. If we can find an element in Zm × Zn of order mn, that will
do it. Consider x = (1̄, 1̄). The first coordinate is zero when you add m copies of x. First
time both are zero is lcm(m,n) = mn

gcd(m,n) = mn.

What if d = gcd(m,n) 6= 1? Then, as shown, (1̄, 1̄) is not a generator. Why can’t (a, b) be
a generator?
Claim: Order of (a, b) is less than or equal to mn

d . Adding mn
d copies of (a, b) equals

(mnd · a,
mn
d · b). d divides both m and n, so mn

d is equal to m times an integer and n times
an integer. Therefore, in Zm×Zn, the above is equal to (0, 0), so it has order at most mn

d .
Note: this proof also works for more than two factors. We check gcd of each pair of factors.

Example: Z60. What are some groups isomorphic to Z60? 60 = 22 · 3 · 5.

• Z4 × Z3 × Z5

• Z4 × Z15

• Z12 × Z5

• Z3 × Z20

Note that Z2 × Z30 is not isomorphic to these groups.

Theorem: The order of an element (g, h) ∈ G×H is the lcm of |g| and |h|.
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Def: A finitely generated group is a group which has a finite generating set. Examples:
cyclic groups, Dn (generated by {r, s}), any finite group G (generated by itself). Nonex-
amples: Q,R,C.

The Fundamental Theorem of Finitely Generated Abelian Groups: Every finitely
generated abelian group is isomorphic to a finite product of cyclic groups. This product
will be of the form

Zpr11 × Zpr22 × . . .× Zprkk × Z× Z× . . .× Z

where the pi are prime (possibly repeated) and ri ∈ Z+. It could also have no finite factors
(i.e. no Z

pr
i
i

factors). It could also have no infinite factors (i.e. no Z factors). Furthermore,

this decomposition is unique up to reordering factors. The number of infinite factors is
called the Betti number of this group.

What are all finitely generated abelian groups of order 8 up to isomorphism?

• Z8

• Z4 × Z2

• Z2 × Z2 × Z2

Z6 × Z15 × Z25
∼= Z2 × Z3 × Z3 × Z5 × Z25

In a finite abelian group, you can get a subgroup of any order allowed by Lagrange’s
Theorem, even though you can’t necessarily get an element of any order.
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Day 10 : 2/26/2015

More on FTFGAG

• Finite abelian groups of order 144 = 24 · 32:

– Z16 × Z9
∼= Z144

– Z2 × Z8 × Z9

– Z4 × Z4 × Z9

– Z2 × Z2 × Z4 × Z9

– Z2 × Z2 × Z2 × Z2 × Z9

– Z16 × Z3 × Z3

– Z2 × Z8 × Z3 × Z3

– Z4 × Z4 × Z3 × Z3

– Z2 × Z2 × Z4 × Z3 × Z3

– Z2 × Z2 × Z2 × Z2 × Z3 × Z3
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Day 12 : 3/5/2015

Factor Groups

Theorem: Suppose H ≤ G. Left coset multiplication (aH)(bH) = (ab)H is well-defined
iff H is normal in G.
To check well-defined: If I use different names for my cosets, do I still get the same prod-
uct?
If aH = a2H, b1H = b2H, we want (a1H)(b1H) = (a2H)(b2H) so (a1b1H) = (a2b2H). In
other words, is a1b1 ∈ (a2b2)H?
a1 ∈ a2H, so a1 = a2h1 for some h1 ∈ H
b1 ∈ b2H, so b1 = b2h2 for some h2 ∈ H
So a1b1 = a2h1b2h2. h1b2 ∈ Hb2. Since H is normal, Hb2 = b2H. Therefore h1b2 = b2h3
for some h3 ∈ H. So a1b1 = a2b2h3h2 ∈ (a2b2)H.

Theorem: Suppose H is normal in G. Let G/H denote the set of cosets of H. Then G/H
is a group using coset multiplication.

The First Isomorphism Theorem: If φ : G → H is a groups homomorphism, then
G/ ker(φ) ∼= imφ.
Build this up: Make another map µ using φ. Let K = kerφ. µ : G/K → φ[G].
gK 7→ φ(g)

• One-to-one: kerµ = {gK : φ(g) = µ(gK) = eH}. φ(g) = eH iff g ∈ kerφ = K. But
if g ∈ K, then gK = eK

• Onto: Everything in φ[G] comes from some g ∈ G. If φ(g) ∈ φ[G] then gK 7→ φ(g)

• Homomorphism: µ(g1K·g2K) = µ(g1g2K) = φ(g1g2) = φ(g1)φ(g2) = µ(g1K)µ(g2K).

Theorem: The following are equivalent:

• H is normal in G

• gH = Hg for all g ∈ G

• gHg−1 = {ghg−1 : h ∈ H} ⊆ H

• ghg−1 ∈ H for all g ∈ G, h ∈ H
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Theorem: If G is a cyclic group and H ≤ G, then G/H is a cyclic group.
Proof: Let G = 〈g〉. Then H = 〈gm〉 Cosets (elements of G/H) are gkH (has repeats but
lists everything). So what’s a generator for G/H? Any gkH can be written as a power of
gH, so G/H = 〈gH〉.

Fun fact: If G is abelian and H is normal in G, then G/H is abelian.
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3/12/2015

Rings and Fields

• Theorem: In Zn, a nonzero element k is a zero divisor iff gcd(k, n) = d > 1.
Proof: k ·

(
n
d

)
=

(
k
d

)
· n = 0

• Theorem: In a ring R, we have additive cancellation but multiplicative cancellation
iff R has no zero divisors.
Proof: Assume we have ab = ac =⇒ b = c for a, b, c ∈ R, a 6= 0. WTS R has no
zero divisors. Assume ab = 0. If a = 0, done. Otherwise, a 6= 0; rewrite our equation
to ab = a0. By cancellation, b = 0. So R has no zero divisors.
Suppose R has no zero divisors. Assume ab = ac with a 6= 0. ab− ac = a(b− c) = 0.
Since there are no zero divisors, a = 0 or b−c is 0. By assumption a 6= 0, so b−c = 0
and therefore b = c.

• Def: An integral domain is a commutative ring which has no zero divisors.
Corollary: Integral domains have cancellation laws, and a consequence is that you
can solve (usually polynomial) equations by factoring.

• Theorem: If F is a field, then F is an integral domain.
Proof: Fields are commutative rings by definitions. Only need to check there are
no zero divisors. Suppose ab = 0. If a = 0, done. If not, a 6= 0 so a−1 exists in F .
ab = 0 =⇒ 1

aab = 0 =⇒ b = 0. Thus G has no zero divisors and it’s an integral
domain.

• Theorem: Every finite integral domain is a field.
Proof (in book): List elements 1, a1, a2, . . . , ak. Think about any a from this list.
Multiply everything on the left by a. Get a, aa1, aa2, . . . , aak, which is a permutation
of the elements.
Corollary: In particular, if p is prime, Zp is a field.

• Def: If there exists n ∈ Z+ so that a+ . . .+ a = 0 (n copies of a) for all a ∈ R, then
the smallest such n is called the characteristic of R. If no such integer exists, then
char R = 0. An equivalent definition is that the characteristic of R is the largest
additive order of an element in 〈R,+〉.

• Theorem: It’s enough to find the additive order of 1R to find char R.
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