Jeff Nash Summer '14

Linearly independent

- when the vector equation $x_1v_1 + x_2v_2 + ... + x_nv_n = b$ of an indexed set of vectors $\{v_1....v_p\}$ has <u>only</u> the trivial solution (where x is the 0 vector)
- A set of *two vectors* {v1, v2} is linearly independent if and only if neither of the vectors is a multiple of the other

Linearly independent

- No free variables
- Given a set S = {v₁ ... v_p}, no member in the set can be written as a linear combination of the rest
- Invertible

Linearly dependent

- when there exist weights c_1 , ..., c_p , not <u>all</u> zero, such that $c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_p\mathbf{v_p} = \mathbf{0}$
 - By definition, not unique and not invertible
 - \circ A set of two vectors $\{v_1, v_2\}$ is linearly dependent if at least one of the vectors is a multiple of another

- The above equation is called a **linear dependence relation** when the weights are not all zero.
- If a set contains more vectors (<u>columns</u>) than entries in each vector (<u>rows</u>), then the set is linearly dependent (<u>i.e. p > n</u>)
 - This would mean that there is a free variable
- O An indexed set $S = \{v_1, ..., v_p\}$ is linearly dependent if and only if <u>at</u> least one of the vectors in S is a linear combination of the others
 - Only one needs to be to satisfy this requirement. A vector in a linearly dependent set may fail to be a linear combination of the others as long as at least one of the vectors in the set is.
- o If a set $S = \{v_1, ..., v_p\}$ contains the <u>zero vector</u>, it is linearly dependent
- If u and v are linearly <u>independent</u>, the set {u, v, w} will be linearly <u>dependent</u> if and only if w is in the plane spanned by, meaning it is a linear combination of, u and v

