Definitions:

- **Linear equation**: an equation that can be written in the form $a_1x_1 + ... + a_nx_n = b$
 - System of linear equations: collection of one or more linear equations involving the same variables
- **Solution**: a list of numbers that makes each equation in a system of linear equations a true statement when its values are substituted in for x₁...x_n
 - o **Solution set:** set of all possible solutions of a linear system
 - **Equivalent**: when two linear systems have same solution set
- **Consistent**: when a system of linear equations has one solution or infinitely many solutions
 - o **Inconsistent**: when a system of linear equations has no solution
- **Linear combination of v_{1...}v_{p}:** the vector (y) defined by $y = c_{1}v_{1} + ... + c_{n}v_{n}$
 - \circ **Weights:** $c_1...c_p$
 - O A vector equation $x_1\mathbf{a_1} + x_2\mathbf{a_2} + ... + x_n\mathbf{a_n} = \mathbf{b}$, which has the same solution set as the augmented matrix $[\mathbf{a_1} ... \mathbf{a_n} \mathbf{b}]$.
 - In particular, \mathbf{b} can be generated by a linear combination of $\mathbf{a_1}$... $\mathbf{a_n}$ if and only if there exists a solution to the linear system corresponding to the matrix or the left hand of the above vector equation
- **Span**: all valid solutions to a vector equation $\mathbf{b} = x_1 \mathbf{v_1} + x_2 \mathbf{v_2} + ... + x_n \mathbf{v_n}$
 - O Asking whether a vector **b** is in **Span** $\{v_1....v_p\}$ is equivalent to asking whether the equation $x_1v_1 + x_2v_2 + ... + x_nv_n = b$ or the augmented matrix $[v_1 ... v_p b]$ has a solution.
 - Set of all linear combinations
 - **Span** $\{v_1, v_2, ..., v_p\}$ contains every scalar multiple of every vector in that span as a solution because $cv_1 = cv_1 + 0v_2 + ... + 0v_p$
- $A\mathbf{x} = \mathbf{b}$: If A is an $m \times n$ matrix, with columns \mathbf{a}_1 , ..., \mathbf{a}_n and if \mathbf{x} is in R^n , then the **product of** A **and** \mathbf{x} , denoted by $A\mathbf{x}$, is the linear combination of the columns of A using the corresponding entries in x as weights.
 - Ax is defined only if the number of columns of A equals the number of entries (rows) in x
 - O $A\mathbf{x} = \mathbf{b}$ has the same solution set as the vector equation = $\mathbf{x}_1\mathbf{v_1} + \mathbf{x}_2\mathbf{v_2} + ... + \mathbf{x}_n\mathbf{v_n} = \mathbf{b}$ and the augmented matrix [$\mathbf{a_1} \ \mathbf{a_2} ... \mathbf{a_n} \ \mathbf{b}$]
 - The equation Ax = b has a solution if an only if b is a linear combination of the columns of A
 - Asking if **b** is in span $\{a_1, ..., a_n\}$ is the same as asking is Ax = b consistent
- **Homogeneous**: when a system of linear equations can be written as Ax = 0 _ when the right hand side is all zeros.
 - \circ Always has one **trivial solution**, where $\mathbf{x} = \mathbf{0}$
 - Non-trivial solution: solution where <u>at least one</u> entry in x is nonzero
 - The homogeneous equation Ax = 0 has a **nontrivial solution** if and only if the equation has at least one free variable

- To summarize the two cases: one unique solution that has to be the trivial solution, or infinitely many solutions
- Nonhomogeneous: $Ax = b, b \neq 0$
- **Diagonal entries:** The entries in an $m \times n$ matrix $\mathbf{A} = [\mathbf{a}_{ij}]$ following the pattern $\mathbf{a}_{11}, \mathbf{a}_{22}, \mathbf{a}_{33} \dots$
 - o These entries form the main diagonal of A
- **Diagonal matrix:** a square *n* x *n* matrix whose non-diagonal entries are zero
 - o An example is the $n \times n$ identity matrix, I_n
- **Identity matrix:** an *n* x *n* matrix of all zeros, except for the main diagonal, containing all ones
 - O Any $n \times n$ invertible matrix A times its inverse A-1 equals an $n \times n$ identity matrix I_n
- **Elementary matrix:** A matrix obtained by performing a <u>single</u> elementary row operation on an identity matrix
- **Zero matrix**: an *m* x *n* matrix that contains all zeros
- **Addition/subtraction**: Add or subtract corresponding entries in two or more matrices. To add and subtract, <u>matrices must be the same size</u>.
- **Scalar multiplication**: multiply every entry in a matrix by the given scalar
- **Matrix multiplication**: if A is an $m \times n$ matrix and B is an $n \times p$ matrix, then AB is an $m \times p$ matrix where each entry, C_{ij} , is the dot product of the i^{th} row of A and j^{th} column of B
- **Power:** A matrix times itself a given number of times. *Only works for square matrices!*
- **Invertible:** A is **invertible** when there exists an $n \times n$ matrix C such that CA = I and AC = I, where I = I_n the identity matrix
 - o C is the **inverse** of A, denoted by A-1
 - $A^{-1} A = I \text{ and } A A^{-1} = I$
 - o In general, we only consider square matrices when talking about inverses, but not every square matrix is invertible
 - o **Singular**: a matrix that is not invertible
 - If the determinant of the matrix is 0, then that matrix is singular.
 - Linearly dependent
 - o **Nonsingular**: a matrix that is invertible
 - Has only the trivial solution for Ax = 0
 - The columns of A are linearly independent.
 - Ax = b has exactly one solution for each b in Kn. UNIQUE
 - Row equivalent to identity matrix
 - n pivot positions!!!!
 - Columns of A span Rⁿ
 - A^T is invertible
 - A^{-1} is invertible $(A^{-1})^{-1} = A$
 - Simple formula for the inverse of a 2 x 2 matrix:

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, then A is not invertible.

- o **Important**: If A is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n i.e. each possible solution to the matrix $\mathbf{x} = \mathbb{A}^{-1} \mathbf{b}$
- o **Properties of the inverse:**

0

- If A is an invertible matrix, then A^{-1} is invertible and $(A^{-1})^{-1} = A$
- If A and B are $n \times n$ invertible matrices, then so is AB, and the inverse of AB is the *product of the inverses of A and B in the reverse order* (recall that AB \neq BA necessarily and A does not necessarily equal B): $(AB)^{-1} = B^{-1} A^{-1}$
 - The product of n x n invertible matrices is invertible, and the inverse is the product of their inverses in the reverse order
 - If AB is invertible, then det(AB) is not equal to zero.
 Therefore since det(AB)=det(A)*det(B), neither det(A) nor det(B) can be zero, hence both A and B are invertible.
- If A is an invertible matrix, then so is A^T and the inverse of A^T is the transpose of A^{-1} . That is: $(A^T)^{-1} = (A^{-1})^T$
- \circ **To find A-1:** row reduce the augmented matrix [A I] until we get [I A-1]
- **Determinant:** for $n \ge 2$, the determinant of an $n \times n$ matrix $A = [a_{ij}]$ is the sum of n terms of the form $\pm a_{1j}$ with plus or minus signs alternating, where the entries a_{11} , a_{12} ,..., a_{1n} are from the first row of A.
 - o **Properties:**
 - det(AB) = det(A) * det(B)
 - $det(A^T) = det(A)$
 - $\bullet \quad \det(A^{-1}) = 1/\det(A)$
 - Row Operations:
 - If a multiple of one row of A is added to produce another matrix B (replacement), then <u>det(B)</u> = <u>det(A)</u>
 - If two rows of A are interchanged to produce B, then det(B) = -det(A)
 - If one row of A is multiplied by k to produce B, then det(B) = k * det(A)
 - Cramer's Rule
 - Let A be an invertible $n \times n$ matrix. For any **b** in Rⁿ, the unique solution **x** of A**x** = **b** has entries given by:

$$x_i = \frac{\det A_i(\mathbf{b})}{\det A}, \qquad i = 1, 2, \dots, n$$

- Vector Space: a nonempty set V of objects, called *vectors*, where addition and multiplication by scalars are defined
 - Subspace: a subset H of V where the zero vector of V is in H, H is closed under vector addition (for each u and v in H, u + v is in H), and is closed under multiplication by scalars (for each u in H, cu is in H)
 - If $v_1...v_p$ in vector space V, then span $\{v_1...v_p\}$ is a subspace of V
- **Basis**: an indexed set of vectors $B = \{b_1...b_p\}_{in}$ subspace V is a basis for H if B is a linearly independent set and span $\{b_1...b_p\}$ = H
- **Null Space**: set of all solutions to the homogenous equation Ax = 0
 - Usually described implicitly, but can be written explicitly by decomposing the equations and putting them into parametric vector form
 - The
- **Column Space**: set of all linear combinations of the columns of A
 - o The pivot columns of A form a basis for col A
- **Transformation (or function or mapping) T:** from R^n to R^m is a rule that assigns to each vector \mathbf{x} in R^n a vector $T(\mathbf{x})$ in R^m
 - **o** Transformation Lingo:
 - $\underline{Domain \ of \ T}$: The set \mathbb{R}^n
 - *Codomain of T*: The set R^m
 - Image of x: The vector $T(\mathbf{x})$ in R^m corresponding to an \mathbf{x} in R^n
 - Range of T: set of all images T(x)
 - Linear: A transformation is linear if $T(r\mathbf{u} + s\mathbf{v}) = rT(\mathbf{u}) + sT(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T (e.g. in R^n)
 - Standard Matrix for Linear Transformation: A modified identity matrix that transforms any x
 - Important Uniqueness Stuff:
 - Onto: A mapping T: $R^n \rightarrow R^m$ is said to be onto R^m if each **b** in R^m is the image of at least one x in R^n
 - A transformation T maps Rⁿ onto R^m if and only if the columns of the standard matrix A span R^m
 - When the range of T is all of the codomain R^m (no empty parts of the image)
 - *Implications*:
 - Range = R^m (column space of A aka all linear combinations of A's columns)
 - Every b in R^m is a linear combination of columns of A using the original x vector being transformed as a weight
 - Rank = m
 - Dim(kernel) = $n m \ge 0$

• **One-to-one**: A mapping T: $R^n \rightarrow R^m$ is said to be <u>one-to-one</u> if each **b** in R^m is the image of **at most one x** in R^n (e.g. there can be gaps)

• *Implications*:

- Ax = 0 has only trivial solution because only one thing we can map to zero
 - 0 in Rⁿ = 0 in R^m because <u>dimension of</u> kernel is zero
 - Columns are linearly independent
 - Rank = n, because dimension of kernel is zero
 - n ≤ m
- One-to-one and onto: A mapping T: $R^n \rightarrow R^m$ is said to be one-to-one and onto if each **b** in R^m is the image of exactly one x in R^n

• *Implications*:

- A is a square matrix and Ax = b has a unique solution for every b in R^m
 - A has a unique inverse A⁻¹ that is an inverse map that does the reverse
 - $\det(A) \neq 0$
- **Kernel**: Given a linear transformation L: $R^n \rightarrow R^m$, the kernel of L is the set of vectors \mathbf{x} in T: R^n such that $L(\mathbf{x}) = \mathbf{0}$ (e.g. null space)
 - Essentially nul A, where A is the standard matrix
 - dim(kernel) = # free variables/# non-pivot columns
- o **Rank**: the dimension of the column space of A
 - # of pivot columns of A, where A is the standard matrix

- Rank Theorem:

o rank + dim(kernel) = n (# of columns)