# Math 54: Theorems for First Midterm

# **Existence and Uniqueness of Solutions (1.2):**

#### **Existence and Uniqueness Theorem**

A linear system is consistent if and only if the rightmost column of the augmented matrix is *not* a pivot column—that is, if and only if an echelon form of the augmented matrix has *no* row of the form

$$\begin{bmatrix} 0 & \cdots & 0 & b \end{bmatrix}$$
 with b nonzero

If a linear system is consistent, then the solution set contains either (i) a unique solution, when there are no free variables, or (ii) infinitely many solutions, when there is at least one free variable.

#### The Matrix Equation (1.4):

If A is an  $m \times n$  matrix, with columns  $\mathbf{a}_1, \dots, \mathbf{a}_n$ , and if **b** is in  $\mathbb{R}^m$ , the matrix equation

$$A\mathbf{x} = \mathbf{b} \tag{4}$$

has the same solution set as the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b} \tag{5}$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n & \mathbf{b} \end{bmatrix} \tag{6}$$

Let A be an  $m \times n$  matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.

- a. For each **b** in  $\mathbb{R}^m$ , the equation  $A\mathbf{x} = \mathbf{b}$  has a solution.
- b. Each **b** in  $\mathbb{R}^m$  is a linear combination of the columns of A.
- c. The columns of A span  $\mathbb{R}^m$ .
- d. A has a pivot position in every row.

If A is an  $m \times n$  matrix, **u** and **v** are vectors in  $\mathbb{R}^n$ , and c is a scalar, then:

- a.  $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$ ;
- b.  $A(c\mathbf{u}) = c(A\mathbf{u})$ .

Suppose the equation  $A\mathbf{x} = \mathbf{b}$  is consistent for some given  $\mathbf{b}$ , and let  $\mathbf{p}$  be a solution. Then the solution set of  $A\mathbf{x} = \mathbf{b}$  is the set of all vectors of the form  $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$ , where  $\mathbf{v}_h$  is any solution of the homogeneous equation  $A\mathbf{x} = \mathbf{0}$ .

# **Linear Dependence and Independence (1.7):**

#### Characterization of Linearly Dependent Sets

An indexed set  $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$  of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and  $\mathbf{v}_1 \neq \mathbf{0}$ , then some  $\mathbf{v}_j$  (with j > 1) is a linear combination of the preceding vectors,  $\mathbf{v}_1, \dots, \mathbf{v}_{i-1}$ .

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set  $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$  in  $\mathbb{R}^n$  is linearly dependent if p > n.

If a set  $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$  in  $\mathbb{R}^n$  contains the zero vector, then the set is linearly dependent.

# Matrix Operations (2.1):

Let A, B, and C be matrices of the same size, and let r and s be scalars.

a. 
$$A + B = B + A$$

d. 
$$r(A+B) = rA + rB$$

b. 
$$(A + B) + C = A + (B + C)$$
 e.  $(r + s)A = rA + sA$ 

e. 
$$(r+s)A = rA + sA$$

c. 
$$A + 0 = A$$

f. 
$$r(sA) = (rs)A$$

Let A be an  $m \times n$  matrix, and let B and C have sizes for which the indicated sums and products are defined.

a. 
$$A(BC) = (AB)C$$

(associative law of multiplication)

b. 
$$A(B+C) = AB + AC$$

(left distributive law)

c. 
$$(B+C)A = BA + CA$$

(right distributive law)

d. 
$$r(AB) = (rA)B = A(rB)$$
  
for any scalar  $r$ 

for any scalar r

e. 
$$I_m A = A = A I_n$$

(identity for matrix multiplication)

#### WARNINGS:

- **1.** In general,  $AB \neq BA$ .
- 2. The cancellation laws do not hold for matrix multiplication. That is, if AB = AC, then it is *not* true in general that B = C. (See Exercise 10.)
- 3. If a product AB is the zero matrix, you cannot conclude in general that either A = 0 or B = 0. (See Exercise 12.)

## Inverse of a Matrix (2.2):

a. If A is an invertible matrix, then  $A^{-1}$  is invertible and

$$(A^{-1})^{-1} = A$$

b. If A and B are  $n \times n$  invertible matrices, then so is AB, and the inverse of AB is the product of the inverses of A and B in the reverse order. That is,

$$(AB)^{-1} = B^{-1}A^{-1}$$

c. If A is an invertible matrix, then so is  $A^T$ , and the inverse of  $A^T$  is the transpose of  $A^{-1}$ . That is,

$$(A^T)^{-1} = (A^{-1})^T$$

An  $n \times n$  matrix A is invertible if and only if A is row equivalent to  $I_n$ , and in this case, any sequence of elementary row operations that reduces A to  $I_n$  also transforms  $I_n$  into  $A^{-1}$ .

## **Characterizations of Inverted Matrices (2.3):**

#### The Invertible Matrix Theorem

Let A be a square  $n \times n$  matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

- A is an invertible matrix.
- b. A is row equivalent to the  $n \times n$  identity matrix.
- c. A has n pivot positions.
- d. The equation  $A\mathbf{x} = \mathbf{0}$  has only the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation  $\mathbf{x} \mapsto A\mathbf{x}$  is one-to-one.
- g. The equation  $A\mathbf{x} = \mathbf{b}$  has at least one solution for each  $\mathbf{b}$  in  $\mathbb{R}^n$ .
- h. The columns of A span  $\mathbb{R}^n$ .
- i. The linear transformation  $\mathbf{x} \mapsto A\mathbf{x}$  maps  $\mathbb{R}^n$  onto  $\mathbb{R}^n$ .
- j. There is an  $n \times n$  matrix C such that CA = I.
- k. There is an  $n \times n$  matrix D such that AD = I.
- 1.  $A^T$  is an invertible matrix.

# **Introduction to Determinants (3.1):**

If A is a triangular matrix, then det A is the product of the entries on the main diagonal of A.

## **Properties of Determinants (3.2):**

### **Row Operations**

Let A be a square matrix.

- a. If a multiple of one row of A is added to another row to produce a matrix B, then det  $B = \det A$ .
- b. If two rows of A are interchanged to produce B, then  $\det B = -\det A$ .
- c. If one row of A is multiplied by k to produce B, then det  $B = k \cdot \det A$ .

A square matrix A is invertible if and only if det  $A \neq 0$ .

If A is an  $n \times n$  matrix, then det  $A^T = \det A$ .

## **Multiplicative Property**

If A and B are  $n \times n$  matrices, then det  $AB = (\det A)(\det B)$ .

### **BONUS**: Cramer's Rule (3.3):

#### Cramer's Rule

Let A be an invertible  $n \times n$  matrix. For any **b** in  $\mathbb{R}^n$ , the unique solution **x** of A**x** = **b** has entries given by

$$x_i = \frac{\det A_i(\mathbf{b})}{\det A}, \qquad i = 1, 2, \dots, n$$
 (1)