
MCB 61 – Study Tables

lan Fong

Spring 2013 Dr. David Presti

CONTENTS

Δ	LEC	CTURE	pg.
	Θ	1 – Hominids and a Space Odyssey	3
	Θ	2 – The Brain and Mind	4
	Θ	3 – Studying the Brain and Chemistry	4
	Θ	4 – Microbiology Foundations	5
	Θ	5 – The History of DNA and Molecular Biology	6
	Θ	6 – Membranes, Ions and Polarization	7
	Θ	7 – Action Potentials and Neurotransmittance	8
	Θ	8 – Neurotransmitter Mechanisms	9
	Θ	9 – Seizures and Toxins	11
	Θ	10 – Toxins and Drugs	12
	Θ	11 – Psychoactive Drugs	12
	Θ	12 – Psychoactive Drugs pt. II and Gap Junctions	13
	Θ	13 – Epilepsy and Neurogenesis	14
	Θ	14 – Chemo-Affinity and Neuroplasticity	15
	Θ	15 – Lesions and Structural Imaging	15
	Θ	16 – Dynamic Imaging	16
	Θ	17 – PET and Heavy Elements	17
	Θ	18 – Olfaction	18
	Θ	19 – Gustation	19
	Θ	20 – Hearing (pt. I)	20
	Θ	21 – Hearing (pt. II) and Vision (pt. I)	21
	Θ	22 (pt. I) – Vision (pt. II)	22
Δ	REA	ADER	pg.
	Θ	1 – Origins	24
	Θ	2 – Brains and Neurons	24
	Θ	3 – Chemistry and Life	25
	Θ	4 – Genes, DNA, and the History of Molecular Biology	25
	Θ	5 – How Neurons Generate Signals	26
	Θ	6 – Synapses, Neurotransmitters, and Receptors	26
	Θ	7 – Neurotransmitters, Neuroanatomy, and Seizures	27
	Θ	8 – Poison, Medicine, and Pharmacology	27
	Θ	9 – Psychoactive Drugs	28
	Θ	10 – Wiring and Neuroplasticity	28
	Θ	11 – Brain Imaging	29
	Θ	12 – Sensory Perception	30
	Θ	13 – Eye and Vision	31
	Θ	14 – Ear and Hearing	32
	Θ	15 – Nose and Smell	33
	Θ	16 – Tongue and Taste	33
	Θ	17 – Skin, Touch, and Movement	33
	Θ	18 – Cortex and Language	35

	LECTURE
Lec 1 – Hominids and a Spa	ice Odyssey
2001: A Space Odyssey	A film by Stanely Kubrick that depicts the trials of man vs. machine. The movie has
	an opening nod to the development of murder as a social interaction between
	hominids.
Stanley Kubrick, Arthur C.	Stanley Kubrick – director of 2001: A Space Odyssey
Clarke	
	Arthur C. Clarke – writer of the original 2001: A Space Odyssey and co-writer for
	the adapted screenplay. He had three laws referred to as Clarke's Three Laws:
	1) When a scientist states something is possible, he is right. If impossible,
	he is probably wrong
	2) The only way to find the limits of possibility is to attempt to venture past
	2) The only way to find the limits of possibility is to attempt to venture past
	 Advanced technology is indistinguishable from magic
Haminida	
Hominids	Human-like animals, including modern humans and "recent" ancestors (appx 5
Course Australia with some	mya) The server are selfing (James Fushing Language 4 and 1 and
Genus Australopithecus	The genus preceding <i>Homo</i> . Evolved around 4 mil years ago, extinct by 2 mil
	years.
Genus Homo	The current genus of humans. The only extant species is <i>Homo sapiens</i> .
Homo Neanderthalensis	A parallel evolutionary branch of <i>Homo</i> . Lived 300,000-30,000 years ago
Chauvet Cave Paintings,	Discovered in 1994, the caves had drawings depicting animals and some
France	anthropologic behaviors. Believed to date around 15,000-30,000 years ago, it is
	thought that ancient humans traveled down these caves by torchlight and drew
	art, using the atmosphere of the cave as a mystical (and possibly hallucinogenic)
	experience.
Stonehenge, England	Built around 4,500 years ago, this site was believed to be an ancient observatory
	or some other astronomical structure. Importance of rituals in the lives of the
	ancients?
Evolution of Brain/Skull	Common trend of skull size increase among newer species of humans. Determined
Size	by fossil examination. More than just increased body size.
	- Ardi – 350cc
	- Austra – 500cc
	- H. Habilis – 700cc
	- H. Erectus – 1000cc
	- H. Neanderthalensis – 1400cc
	- H. Sapiens – 1400cc
Violence, killing of	Evolved trait, however tendencies of love and trust are generally higher than
conspecifics	violence. Estimates of 150,000,000 people died in the 20 th century (and 175,000
	in the US during 21 st century) as a result of violence. Great proponents of peace
	include John Lennon and MLK. Compassion and kindness are "perhaps the
	strongest and most natural of our behavioral tendencies."
Does HAL have a mind?	HAL is a computer that is self-aware and has blatant tendencies toward self-
	preservation.
	Mind – a collection of mental experiences.
	Mental Experiences – subjective (first-person, internal) experiences including
	thoughts, feelings, perceptions (visual, auditory, olfactory, gustatory, olfactory,
	tactile).
	Consciousness – capacity to be aware
	When it comes down to it, the answer to this question is irreducibly subjective
	because what defines consciousness and mental experience is subjective.

LECTURE

Lec 2 – The Brain and the M	lind
Mind, Consciousness	See Does HAL have a mind?
Mind-body problem	How exactly are our minds and mental experiences connected to our physical
	body? Neurologists liken there to be a connection with the brain and the mind,
	but is the mind a product of the brain?
Physicalism, physical	Everything about reality as described by the laws of physics
materialism	
Nervous System	Sponges – no nervous system
Complexity across Species	Hydra – Nerve net network of neurons
	Jellyfish – simple nervous system
	Nematode – Complex behavior, simple neurons (302), considered good candidate
	for developmental research
	Flatworms – Nerve clusters, more complex system
	Insects – sophisticated brains and behaviors
	Vertebrates – spinal cord and brains that look similar among all vertebrates
Cerebrum, Cerebellum,	Cerebrum – often called the cerebral cortex – the sheet of brain tissue matter that
Brain Stem	forms the folds. Controls all voluntary actions along with the cerebellum.
	Cerebellum – the "ridgy" thing at the base of the cerebrum that is responsible for
	some motor control, timing, and some cognitive functions like attention.
	Brain Stem – the cluster of neural cells and tissue that connect the brain with
	spinal cord and neurons that are threaded throughout the body.
Cerebral Cortex, Sulci,	Cerebral Cortex – the cerebrum that is highly folded up.
Gyri	Culsi. The groot of the folds of the construction
	Sulci – The grooves of the folds of the cerebral cortex.
	Gyri – The bumps of the folds of the cerebral cortex.
Corpus Callosum	The 200,000,000 neurons that connect the brain hemispheres. It assists the
corpus canosum	communication between the right and left hemispheres
Cerebral Lobes, Brain	The brain is divided into four lobes: the frontal (main signals), temporal (auditory),
Hemispheres	parietal (special sense and navigation), and occipital (vision) lobes. The central
	sulcus separates the frontal and parietal lobes. The longitudinal fissure divides the
	left and right cerebral hemispheres.
Lec 3 – Studying the Brain a	
Gray Matter, White	Gray matter – neural cell bodies (Soma)
Matter, Ventricles	
	White matter – nerve fibers (Axon + Myelin)
	Ventricles – cavities filled with cerebral spinal fluid (protection and spinal
	connection)
Andreas Vesalius	He was responsible for meticulously dissecting the human body to understand the
	location of nerve fibers. Artists helped draw his dissections and discoveries
Meninges: Dura,	Meninges refers to the protective tissue that covers the outside of the brain,
Arachnoid, Pia	including:
	Dura – a skin-like sheet of tissue, the most external of the meninges tissues
	Arachnoid – layer of tissue just under the dura and more delicate. It includes a
	spiderweb-like complex with the pia mater where the CSF resides
	Pia – delicate layer on top of the brain.

Meningitis	An inflammation of the meninges that could be fatal or lead to irreversible brain
-	damage.
Cerebrospinal Fluid (CSF)	Fluid that rests in the subarachnoid space that serves to cushion the brain in the skull.
William James	One of the first psychologists who wrote <i>Principles of Psychology</i> in 1890. It
	brought to life the connection between the brain and consciousness.
René Descartes	Wrote the <i>Trestise of Man</i> (published posthumously in 1662) that contemplated the question of "who are we?" "What do we think we are or do?" He questioned the nature of the nervous system and what makes consciousness a reality. In the book was a drawing of a person reacting to a fire suggesting a connection between the feeling in the hand and the head.
Luigi Galvani	He was the first person to connect electricity with movement in animals ("animal electricity") with shocking a frog leg
Camilio Golgi, Golgi Stain	Golgi researching psychosis in mental patients by studying the brain. Came up with a chemical to stain neurons with a microscope – the black reaction (Golgi Stain). AgNO ₃ + K ₂ CrO ₄ \rightarrow Ag ₂ CrO ₄ only stains 1% - 2% of neurons Illustrated neurons, thought they were all continuous.
Santiago Ramón y Cajal	Worked to illustrate neurons in the body. Believed they were segmented in parts
Nerve Cell, Neuron	Nerve cells are the basic units of inter-organ communication. There are approximately 10 ¹¹ nerve cells in the human body.
Glial Cell, Glia	Glial cells are a class of cells that make up part of the brain. There are about $5-10x$ more glial cells than there are neurons (about 10^{12} glial cells).
Dimitri Mendeleev	The man who created the periodic table of elements. He also used the table to accurately predict the existence of undiscovered elements.
Elemental Composition of	The human body is comprised of about 96% Oxygen, Carbon, Hydrogen, and
the Human Body	Nitrogen. The rest is composed of Calcium, Phosphorus, Potassium, Sulfur, Sodium, Chlorine, and other trace elements. Oxygen is the most abundant atom in the human body (65%). Hydrogen is the most abundant in the body by atom count. Carbon would be the most abundant element in terms of dry weight.
Ions: Cations, Anions	Cations are ions with a positive charge (less electrons) anions are ions with a negative charge (more electrons). Ions are charged atoms
Molecules, covalent bonds	Molecules are collections of atoms bonded by covalent bonds (generally nonmetal elements)
Organinc Molecules,	Molecules synthesized by living things; they generally are composed of
Hydrocarbons	hydrocarbon skeletons and primarily involve C, H, O, N, S, P.
Lec 4 – Microbiology Found	ations
Polymers, Plastics, Resin Identification Code	 Plastics are categorized with the Resin Identification Code: 1-7 for plastics. It was designed to look like the recycle sign. Plastics are essentially a hydrocarbon polymer that varies in complexity between the plastics. 1) PETE – polyethylene terephthalate (recyclable) 2) HDPE – high-density polyethylene (recyclable) 3) V – polyvinyl chloride 4) LDPE – low-density polyethylene 5) PP – propylene 6) PS – polystyrene 7) Other
Polarity	The nature of molecules to have a positive and/or negative side(s) to their form. Polar molecules can form bonds of varying intensities with attractive forces.
Hydrogen Bonds	Hydrogen bonds are attractive bonds weaker than ionic bonds, but stronger than London Dispersion Forces. They are formed by the contact of molecules with an O-H, N-H, or F-H bond. Polarity describes the effects.

Hydrophobic/lipophilic;	Hydrophobic/lipophilic substances are nonpolar and more likely to dissolve in
Hydrophilic/lipophobic	nonpolar substances like oil. Hydrophilic/lipophobic substances are polar.
Biological	Polysaccharides, Polypeptides, lipids, and Nucleic Acids make up the biological
Macromolecules	macromolecules.
Lipids/fats, Phospholipids,	Formed from a glycerol and three fatty acids (or two fatty acids and one
Lipid Bilayer Membrane	phosphoric acid group in phospholipids), these macromolecules serve as energy
	storage (lipids), hormones (steroids), and substituents of the lipid bilayer
	(phospholipids). The bilayer forms with the nonpolar tails pointed toward the
	center and the polar heads (phosphoric acid group) pointed toward the outside of
	the membrane.
Amino Acids,	Amino acids have an amine group, a carboxylic acid group and a functional group.
Polypeptides, Proteins	They form polymers—linked by peptide bonds—that form proteins when they
	reach a length of about 30 or more.
Levels of Description for	A protein's primary structure is its basic amino acid sequence. A protein's
Protein Structure:	secondary structure is the way the primary structure folds together. The tertiary
Primary, Secondary,	structure is the protein's overall 3D shape.
Tertiary	
Alpha Helix	A single helix that forms between amino acids (linkages every 4 amino acid) it
•	forms part of the secondary structure of a protein along with the pleated sheet.
	The alpha helix was discovered by Linus Pauling.
Carbohydrates, Sugar	Carbohydrates are polysaccharides: polymers of sugar molecules that serve as
	energy storage in the body and ID tags for proteins.
Nucleic Acids:	A polymer of nucleotides (units of sugar attached to a phosphate group and a
deoxyribonucleic acid	purine or pyrimidine base). They form DNA and RNA in the cell which are used for
(DNA), ribonucleic acid	cellular blueprints and genetic code messengers respectively. They form a double
(RNA)	helix molecule as DNA. Largest molecules in our body.
Lec 5 – The History of DNA	
Gene	A packet of information in the form of a DNA sequence that encodes information
	for specific phenotypes and proteins in the human body. Fundamental unit of
	inheritance.
Charles Darwin	The author of <i>Origin of the Species</i> , which summed up the principle of natural
	selection and proclaimed all life on earth came from a common ancestor.
Gregor Mendel	selection and proclaimed an me on earth came nom a common anceston.
	Catholic monk who came up with the principle that traits are passed on in an
Siceol Mendel	Catholic monk who came up with the principle that traits are passed on in an orderly way (nea plant experiments and phenotypes). He had no relationship with
	orderly way (pea plant experiments and phenotypes). He had no relationship with
	orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin.
Wendell Stanley	 orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin. He was responsible for crystallizing the first virus (tobacco mosaic) for structural
	 orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin. He was responsible for crystallizing the first virus (tobacco mosaic) for structural and hereditary study. His research led to the isolation of a nucleoprotein that
Wendell Stanley	 orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin. He was responsible for crystallizing the first virus (tobacco mosaic) for structural and hereditary study. His research led to the isolation of a nucleoprotein that displayed activities of the TMV. The person who Stanley Hall is named after.
	 orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin. He was responsible for crystallizing the first virus (tobacco mosaic) for structural and hereditary study. His research led to the isolation of a nucleoprotein that displayed activities of the TMV. The person who Stanley Hall is named after. Gave a "Light and Life" lecture (1932) – don't get depressed about troubles with
Wendell Stanley	 orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin. He was responsible for crystallizing the first virus (tobacco mosaic) for structural and hereditary study. His research led to the isolation of a nucleoprotein that displayed activities of the TMV. The person who Stanley Hall is named after. Gave a "Light and Life" lecture (1932) – don't get depressed about troubles with observation, sometimes these obstacles will shed light on new facets of science.
Wendell Stanley Niels Bohr	 orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin. He was responsible for crystallizing the first virus (tobacco mosaic) for structural and hereditary study. His research led to the isolation of a nucleoprotein that displayed activities of the TMV. The person who Stanley Hall is named after. Gave a "Light and Life" lecture (1932) – don't get depressed about troubles with observation, sometimes these obstacles will shed light on new facets of science. Questions what is "molecular level."
Wendell Stanley	 orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin. He was responsible for crystallizing the first virus (tobacco mosaic) for structural and hereditary study. His research led to the isolation of a nucleoprotein that displayed activities of the TMV. The person who Stanley Hall is named after. Gave a "Light and Life" lecture (1932) – don't get depressed about troubles with observation, sometimes these obstacles will shed light on new facets of science. Questions what is "molecular level." Astronomer, then quantum mechanics, then molecular biology. In 1935 he wrote
Wendell Stanley Niels Bohr	 orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin. He was responsible for crystallizing the first virus (tobacco mosaic) for structural and hereditary study. His research led to the isolation of a nucleoprotein that displayed activities of the TMV. The person who Stanley Hall is named after. Gave a "Light and Life" lecture (1932) – don't get depressed about troubles with observation, sometimes these obstacles will shed light on new facets of science. Questions what is "molecular level." Astronomer, then quantum mechanics, then molecular biology. In 1935 he wrote a paper "On the Nature of Gene Mutation and Gene Structure" which, in chapter
Wendell Stanley Niels Bohr	 orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin. He was responsible for crystallizing the first virus (tobacco mosaic) for structural and hereditary study. His research led to the isolation of a nucleoprotein that displayed activities of the TMV. The person who Stanley Hall is named after. Gave a "Light and Life" lecture (1932) – don't get depressed about troubles with observation, sometimes these obstacles will shed light on new facets of science. Questions what is "molecular level." Astronomer, then quantum mechanics, then molecular biology. In 1935 he wrote a paper "On the Nature of Gene Mutation and Gene Structure" which, in chapter 3, described genes as hard molecules. Worked with Salvador Luria on
Wendell Stanley Niels Bohr Max Delbruck	 orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin. He was responsible for crystallizing the first virus (tobacco mosaic) for structural and hereditary study. His research led to the isolation of a nucleoprotein that displayed activities of the TMV. The person who Stanley Hall is named after. Gave a "Light and Life" lecture (1932) – don't get depressed about troubles with observation, sometimes these obstacles will shed light on new facets of science. Questions what is "molecular level." Astronomer, then quantum mechanics, then molecular biology. In 1935 he wrote a paper "On the Nature of Gene Mutation and Gene Structure" which, in chapter 3, described genes as hard molecules. Worked with Salvador Luria on bacteriophage genetic studies.
Wendell Stanley Niels Bohr	 orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin. He was responsible for crystallizing the first virus (tobacco mosaic) for structural and hereditary study. His research led to the isolation of a nucleoprotein that displayed activities of the TMV. The person who Stanley Hall is named after. Gave a "Light and Life" lecture (1932) – don't get depressed about troubles with observation, sometimes these obstacles will shed light on new facets of science. Questions what is "molecular level." Astronomer, then quantum mechanics, then molecular biology. In 1935 he wrote a paper "On the Nature of Gene Mutation and Gene Structure" which, in chapter 3, described genes as hard molecules. Worked with Salvador Luria on bacteriophage genetic studies. A scientist inspired by Delbruck's paper, wrote <i>What is Life?</i> in 1944 which
Wendell Stanley Niels Bohr Max Delbruck	 orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin. He was responsible for crystallizing the first virus (tobacco mosaic) for structural and hereditary study. His research led to the isolation of a nucleoprotein that displayed activities of the TMV. The person who Stanley Hall is named after. Gave a "Light and Life" lecture (1932) – don't get depressed about troubles with observation, sometimes these obstacles will shed light on new facets of science. Questions what is "molecular level." Astronomer, then quantum mechanics, then molecular biology. In 1935 he wrote a paper "On the Nature of Gene Mutation and Gene Structure" which, in chapter 3, described genes as hard molecules. Worked with Salvador Luria on bacteriophage genetic studies. A scientist inspired by Delbruck's paper, wrote <i>What is Life?</i> in 1944 which addressed molecules and biology. He proposed that a "new lens of physics" will
Wendell Stanley Niels Bohr Max Delbruck	 orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin. He was responsible for crystallizing the first virus (tobacco mosaic) for structural and hereditary study. His research led to the isolation of a nucleoprotein that displayed activities of the TMV. The person who Stanley Hall is named after. Gave a "Light and Life" lecture (1932) – don't get depressed about troubles with observation, sometimes these obstacles will shed light on new facets of science. Questions what is "molecular level." Astronomer, then quantum mechanics, then molecular biology. In 1935 he wrote a paper "On the Nature of Gene Mutation and Gene Structure" which, in chapter 3, described genes as hard molecules. Worked with Salvador Luria on bacteriophage genetic studies. A scientist inspired by Delbruck's paper, wrote <i>What is Life?</i> in 1944 which addressed molecules and biology. He proposed that a "new lens of physics" will be discovered (i.e. another field of science which will turn out to be Molecular
Wendell Stanley Niels Bohr Max Delbruck Ewin Schrodinger	 orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin. He was responsible for crystallizing the first virus (tobacco mosaic) for structural and hereditary study. His research led to the isolation of a nucleoprotein that displayed activities of the TMV. The person who Stanley Hall is named after. Gave a "Light and Life" lecture (1932) – don't get depressed about troubles with observation, sometimes these obstacles will shed light on new facets of science. Questions what is "molecular level." Astronomer, then quantum mechanics, then molecular biology. In 1935 he wrote a paper "On the Nature of Gene Mutation and Gene Structure" which, in chapter 3, described genes as hard molecules. Worked with Salvador Luria on bacteriophage genetic studies. A scientist inspired by Delbruck's paper, wrote <i>What is Life?</i> in 1944 which addressed molecules and biology. He proposed that a "new lens of physics" will be discovered (i.e. another field of science which will turn out to be Molecular Biology).
Wendell Stanley Niels Bohr Max Delbruck	 orderly way (pea plant experiments and phenotypes). He had no relationship with Darwin. He was responsible for crystallizing the first virus (tobacco mosaic) for structural and hereditary study. His research led to the isolation of a nucleoprotein that displayed activities of the TMV. The person who Stanley Hall is named after. Gave a "Light and Life" lecture (1932) – don't get depressed about troubles with observation, sometimes these obstacles will shed light on new facets of science. Questions what is "molecular level." Astronomer, then quantum mechanics, then molecular biology. In 1935 he wrote a paper "On the Nature of Gene Mutation and Gene Structure" which, in chapter 3, described genes as hard molecules. Worked with Salvador Luria on bacteriophage genetic studies. A scientist inspired by Delbruck's paper, wrote <i>What is Life?</i> in 1944 which addressed molecules and biology. He proposed that a "new lens of physics" will be discovered (i.e. another field of science which will turn out to be Molecular

	a way that did not mirror the status quo. Also, his experiments were more complex.
Hershey-Chase	The widely-accepted experiment in 1952 that proved that DNA was the genetic
Experiement	material in organisms, and not proteins. It involved a blender, radioactive S and P
	(proteins and nucleic acids respectively), E. coli, and a bacteriophage (T2). It
	occurred 8 years after the Avery experiment.
Francis Crick	A researcher that worked on discovering the structure of DNA under Sir Lawrence
	Bragg. He co-published "Molecular Structure of Nucleic Acids" with James Watson
	in 1953.
James Watson	A researcher who worked on the discovery of DNA structure with Francis Crick
	while under an internship with Max Perutz. He co-published "Molecular Structure
	of Nucleic Acids" with Francis Crick. Won the Nobel Prize for Physiology/Medicine
	in 1962 with Crick and Wilkins.
Rosalind Franklin	A researcher studying the structure of DNA using x-ray crystallography. Her
	photographs were instrumental in aiding Watson and Crick in discovering the
	structure of DNA.
DNA structure and	DNA is a double helix that has genetic material encoded in its codons (nucleotide
function	triplets) that correspond to a different amino acid. DNA is the genetic material
	behind the inheritance of traits.
Nucleotide codons,	Nucleotide codons are triplets of nucleotides that correspond to a different amino
genetic code	acid. The genetic code is the combination of codons that encode for full proteins
-	and phenotypes.
Gene transcription	Gene transcription occurs when mRNA molecules are polymerized on the
-	temporarily unzipped DNA of a cell.
Translation	Translation occurs when mRNA is read (by codon) by ribosomes to polymerize
	amino acids into proteins.
Lec 6 – Membranes, Ions, a	nd Polarization
Linus Pauling	Discovered the alpha helix by folding paper. Won the Nobel Prize in Chemistry
-	(1954) and Peace (1962). Proposed the triple helical structure of DNA with
	nucleotides on the outside.
California Loyalty Oath	The oath required by all state employees in California that required the
	uncompromising loyalty of the employees to the state and country (i.e. "I am not a
	Communist"). Edward Tolman famously rejected the oath and brought it to the
	supreme court.
Diffusion	The movement of matter to evenly fill a space (i.e. movement down a
	concentration gradient).
Ion Channels	Intrinsic proteins that facilitate the diffusion of ions across a phospholipid bilayer
	membrane and down their concentration gradient (a type of passive transport).
lon pumps	Intrinsic proteins that facilitate the movement of ions across a phospholipid
	bilayer membrane against their concentration gradient. This movement requires
	ATP and is a type of active transport.
ATP	The "energy packets" of cells. They are essentially adenosine nucleotides with
	three phosphate groups. The breaking of a phosphate-phosphate bond and
	subsequent formation of a phosphate-molecule bond drives many endergonic
	reactions in the cell.
Energy consumption by	25% of the basal metabolic rate of the body, which equals about 360 kilocalories
Energy consumption by the human brain	25% of the basal metabolic rate of the body, which equals about 360 kilocalories per day. 60% of that rate goes to run Na/K pumps.
the human brain	per day. 60% of that rate goes to run Na/K pumps.
•	

Ion concentration	The concentration of Na ⁺ , Cl ⁻ , and Ca ⁺⁺ are greater outside of the cell whereas the
differences inside the cell	concentration of K ⁺ is greater inside the cell.
and outside cell	
Membrane and resting	The unequal distribution of the ions inside and outside of the nerve cell
potential	membrane leads to the resting potential/membrane potential of -70 mV inside of
	the cell.
Hyperpolarization,	Hyperpolarization – the switch to a more negative voltage potential.
depolarization	
	Depoloarizaion – the switch to a more positive voltage potential.
Lec 7 – Action Potentials ar	nd Neurotransmittance
Alan Hodgkin, Andrew	Scientists who published in <i>Nature</i> . Contributed to the WWII effort before
Huxley	working again and predicted the presence of voltage-gated ion channels in nerve
	cells. They also directly measured the voltage changes across a nerve cell
	membrane.
Squid Axon	The focus of Hodgkin and Huxley's research that were sufficiently large in
	diameter (0.5 mm) so that a voltmeter could be inserted. The properties of squid
	axons aided in Hodgkin and Huxley's research and ultimately the theory they
	proposed with what was happening when a neural signal travels along an axon.
Action Potential	A momentary spike in the voltage of a cell. The action potential in a nerve cell
	resembles a jump in +60 mV, a subsequent drop of -70 mV, and a depolarization
	to -70 mV.
Voltage-gated ion	Voltage-gated ion channels are ion channels that open up at a certain voltages to
channels: Na ⁺ , K ⁺ , Ca ⁺⁺	allow ions to pass across the membrane down their concentration gradient.
	Sodium channels are activated around a voltage of -55 mV, and potassium
	channels are activated around a voltage of +30 mV.
Firing threshold	The minimum voltage before an ion channel may open up and allow ions to pass
	through the membrane.
Refractory period	The period of time in which ion channels must wait before a stimulus can open the
nendetery period	channels after they are used. This prevents reverse propagation of a nerve signal.
Action potential	Once an action potential is started, voltage gated sodium channels open at some
propogation along axon	location at an axon. The Na ⁺ ions rapidly drift from where they flow in and make
bioboBation along avoit	nearby areas in the axon more positive. This leads to the activation of voltage-
	gated sodium ion channels that are not in their refractory periods (i.e. a forward
	motion).
Axon hillock	The first place where an action potential will occur. The part of the axon that is
	closest to the soma. The further away from this a synapse is, the weaker the
	signal.
Myelin	A type of glial cell that is composed of primarily plasma membrane (75%). It is
	formed when oligodendrocytes or Schwann cells wrap their cell bodies around the
	axon. This act of wrapping around the axon spaces out the clusters of gated
	channels allowing a faster propagation of an axon signal. Unmyelinated axons
	have a protein density of 100 per μ m ² and a speed of several mph, whereas
	myelinated axons have a protein density of 10,000 per μ m ² and a speed of 200
	mph. Insects don't have myelin.
Oligodendrocytes,	Oligodendrocytes – myelin on the nerve cells in the brain. The nucleus exists
Schwann Cells	extant of the wrappings, allowing it to extend over many axons.
	extent of the wrappings, anowing it to extend over many axons.
	Schwann Cells – myelin on the nerve cells in the peripheral nervous system. The
	nucleus exists inside of the wrapping parts.
Nodes of Ranvier	The points at which different myelin cell wrappings touch on an axon.
Saltatory conduction	The propagation of a charge from one node of Ranvier to another.
Multiple sclerosis	An inflammatory disease brought about by the unmyelination of axons.
watupie scierosis	An initial initiation of axons.

Electrical synapse: Gap	An electrical synapse is effectively a gap junction between one nerve cell and
Junction, Connexins,	another. Gap junctions are transport proteins that connect two cells. The
Connexons	proteins in an electrical synapse are 2 connexons forming a channel, which are
	formed from 6 connexins each. The gap between cells is about 3.5 nm. The size
	of the pores are 1-2 nm, generally larger than ion channels to allow varieties of
	ions to pass through quickly.
	In short, electrical synapses are responsible for the communication of ion
	concentration or membrane potential changes from one cell to another.
Chemical Synapse	Complex synapses that provide for kinds of regulation, including changes in signal
	strength, feedback, and varied effects on different target cells. The gap between
	neurons (the synaptic cleft) is about 30 nm long.
Neurotransmitter	A molecule passed from a presynaptic neuron via exocytosis that binds to a
•• • ••	receptor protein in a postsynaptic neuron to elicit a change or propagate a signal.
Neurotransmitter	An intrinsic receptor protein in the membrane of the postsynaptic neuron that
Receptor	binds to a neurotransmitter molecule and elicits a change or a propagation of a
	signal. Sometimes there are receptors imbedded in the presynaptic membrane, allowing for possibilities of feedback. There are ionotropic receptors (similar to
	voltage-gated channels but the firing mechanism is due to a neurotransmitter) and
	metabotropic receptors (see metabotropic receptors , GPCR).
Reuptake transporter	Intrinsic transporter proteins in the membrane of the presynaptic neuron that
	reabsorb neurotransmitters via vesicles (for reuse and prevention of extreme
	signal propagation).
Dendritic Spines	Small protrusions from the dendrite that receives input from a single synapse of
•	an axon and help transmit signals to the soma.
Otto Loewi	A researcher who demonstrated the concept of chemical neurotransmission in
	1920 with frog hearts. Through the stimulation of the vagus nerve in one heart, its
	beating slowed; a fluid transfer to another jar with another heart led to the
	slowing of the second heart.
Vagus nerve, vagusstoff	A nerve that is part of the autonomic nervous system (parasympathetic) and is
	responsible for controlling heart rate. Vagusstoff was the name given by Otto
	Loewi to the chemical (neurotransmitter) that was responsible for the change in
A to data a lite -	the system.
Acetylcholine	The neurotransmitter responsible for the parasympathetic portion of the
Glutamate	autonomic nervous system. This was the <i>vagusstoff</i> that Otto Loewi observed. The most abundant neurotransmitter in the human brain. Glutamate is the
Giutamate	ionized form of the amino acid glutamic acid, which is one of the 20 amino acids
	that encode for organic proteins. In the aqueous solutions of the brain, the
	ionized form dominates.
GABA	The major inhibitory neurotransmitter in the brain: gamma-amino-butyric acid. A
•	large number of GABA receptors are ionotropic receptors.
Glutamic acid	The enzyme responsible for the transformation of glutamic acid into GABA.
Decarboxylase	
Lec 8 – Neurotransmitter	Mechanisms
lonotropic receptors	Receptor proteins that act like voltage-gated ion channels, with the exception of a
	neurotransmitter as the firing mechanism.
EPSP	Excitatory post-synaptic potentials occur when a membrane potential
	depolarization is observed in the post-synaptic membrane after a
	neurotransmitter binds to a receptor proten.
IPSP	Inhibitory post-synaptic potentials occur when a membrane potential
	hyperpolarization is observed in the post-synaptic membrane after a
	neurotransmitter binds to a receptor protein.

Spatial and temporal	Action potentials are initiated through the summation of EPSPs and IPSPs. EPSPs
summation of neuronal	or IPSPs, when fired off in a close temporal spacing/simultaneous stimuli lead to
input	constructive interference. When the voltage potential reaches -50 mV, the action
input	potential begins
Metabotropic receptors,	G-protein coupled receptors are complex receptor systems that involve the
GPCRs	following in succession:
	1) receptor protein
	2) G-protein
	3) Effector Enzyme
	4) Second Messengers (cAMP)
	5) Protein Kinase
Metabotropic receptors,	6) Substrate Protein
GPCRs (cont)	
	The benefits of metabotropic receptors include versatility and signal amplification.
	Cellular effects include enzyme activation, channel properties, gene transcription,
	etc.
GPCR signaling: receptor,	1) Receptor receives a signal via a neurotransmitter which facilitates a
G-protein, effector	change in shape on the intracellular side.
enzyme, intracellular	2) That allows the G-protein to bind to it and release a GDP (guanosine
messenger, protein kinase	diphosphate) while subsequently binding to a GTP (guanosine
	triphosphate).
	3) The G-protein breaks apart and can attach to other molecules—including
	effector enzymes and protein kinases—to bring about a change that may
	be facilitated by intracellular messengers (cAMP, cGMP, IP ₃ , DAG).
	4) Protein kinase may phosphorylate ion channel proteins or other
	molecules including transcription factors.
Autonomic nervous	The autonomic nervous system is part of the peripheral nervous system (PNS) that
system: sympathetic,	regulates various body organs and internal functions including heart rate, blood
parasympathetic	pressure, respiration, and digestion. It is split into two parts – the
parasympathetic	parasympathetic and the sympathetic nervous system. The parasympathetic
	nervous system regulates the calming effects on the body (relaxes the body),
	whereas the sympathetic nervous system regulates the excitatory effects on the
	body (prepares the body for emergencies).
Neurotransmitters (NT):	Norepinephrine is the neurotransmitter for the sympathetic nervous system and
norepinephrine,	acetylcholine is the neurotransmitter for the parasympathetic nervous system.
acetylcholine	
Sympathomimetic,	Something that is sympathomimetic replicates the sympathetic system and
parasympatholytic	enhances it. Parasympathomimetic molecules do the same for the
paras,paras,	parasympathetic system. They are agonists.
	Something that is sympatholytic interferes with the sympathetic system and
	reduces it. Parasympatholytic molecules do the same for the parasympathetic
	system. They are antagonists.
Acetylcholine	The neurotransmitter for the parasympathetic system. It is found in the brain and
	neuromuscular junction. The nuclei for the acetylcholinergic system include the
	basal forebrain nuclei and the midbrain nuclei.
Nicotinic and muscarinic	Nicotinic acetylcholine receptors are ionotropic sodium channels whereas
AChRs	muscarinic acetylcholine receptors are infortopic sodium chamies whereas
Acetylcholine esterase	An enzyme that breaks down acetylcholine. One of the fastest enzymes.
-	
enzyme	

Nouromucoulariunatica	A junction that connects the nervous system to muscle fibers in which
Neuromuscular junction	A junction that connects the nervous system to muscle fibers, in which
(IMI)	acetylcholine is released from a neuron that binds to nicotinic acetylcholine
Constanin northe surela!	receptors in the muscle membranes to stimulate movement.
Serotonin, raphe nuclei	100,000 neurons are part of the serotonin circuitry, with several clusters of
	serotonergic neurons existing in the brain stem called Raphé nuclei. Serotonin is
	found in blood (1940s) with effects on constriction and dilation of blood vessels.
	Serotonin was later found to exist within the brain. Serotonin ultimately comes
	from the amino acid tryptophan (in 2 steps).
Dopamine, ventral	Dopamine comes from 3 transformations of phenylalanine and is the precursor to
tegmentum, substantia	norepinephrine (noradrenaline) and epinephrine (adrenaline). The nuclei in the
nigra	system of dopaminergic cells include the ventral tegmentum and the substantia
New stars between the sur-	nigra (smaller).
Norepinephrine, locus	The norepinephrine-producing region of the brain stem is the locus coeruleus.
coeruleus	
Biosynthesis of	The synthesis of monoamine neurotransmitters (including dopamine, serotonin,
monoamine	norepinephrine, epinephrine, and histamine) stems from the stepwise reactions of
neurotransmitters	amino acids which are catalyzed by enzymes.
Peptide	Short chains of amino acids linked by peptide bonds that act as neurotransmitters.
neurotransmitters	
Lec 9 – Seizures and Toxins	
Electroencephalography	The recording of electrical activity along the scalp over a period of time. It also
(EEG)	measures the fluctuations of voltage throughout the neurons in the brain.
seizure	The result of too much excitation in neuronal connections and not enough
	inhibition that leads to an explosive chain reaction of excitation in the body. Often
	leads to memory loss, loss of consciousness, and muscle spasms.
Idiopathic seizure, causes	Idiopathic seizures are seizures of unknown causes. Several factors may cause
of seizures	seizures, including physical trauma, infection, fever, tumor, emotional stress, sleep
	deprivation, and certain drugs/withdrawal.
Epilepsy	A condition of chronic and recurrent seizures. Nearly 1% of the US population has
	epilepsy. Diagnosis usually comes after a trigger event.
Antiseizure medications	Medications for seizures include barbiturates (phenobarbital) and
	benzodiazepines (diazepam = Valium, acute seizure treatment; clonazepam =
	Klonopin, long-term seizure treatment). In severe cases, surgical procedures are
	carried out to excise small portions of the brain that are seizure-inducing foci.
	30% of people with epilepsy find that their seizures are not controlled by medication.
Flastrosortisography	The practice of placing electrodes directly on the brain to measure the electrical
Electrocorticography	
(ECoG) Pharmacology	activity of the brain and neurons. The study of how drugs interact with the body
	The 16 th century Swiss physician/alchemist who claimed that "everything is a
Paracelsus	poison. The difference between medicine and a poison is the dose."
Tetradotoxin (TTX)	A toxin that comes from many poisonous animals including puffer fish,
	salamanders, and blue-ringed octopi. The toxin interferes with the voltage-gated
	sodium channels, leading to muscle weakness/paralysis, respiratory paralysis, and
	numbness. Due to its polarity, it does not pass the blood-brain barrier. It does not
	stop the heartbeat.
Blood-brain Barrier	The blood vessels in the CNS are so constricted that only nonpolar substances may
	pass through to other tissues of the CNS.
TTX resistance	Some organisms are TTX resistant due to a change of a single amino acid in the
	primary structure of the sodium ion channel. This dramatically reduces its ability
	to bind to the channel.

Saxitoxin, PSP	A toxin found in dinoflagellates (red tides) and other protists that leads to
Santonii, FSF	paralytic shellfish poisoning (PSP). The effects are similar to TTX poisoning, and
	like TTX, saxitoxin does not pass the blood-brain barrier.
Lec 10 – Toxins and Drugs	·····
Cocaine, local anesthesia	Local anesthetics produce a numbing sensation in a localized area, as opposed to
	general anesthesia which numbs the entire body. Cocaine is a local anesthetic, as
	it numbs locally. Other local anesthetics include lidocine (Xylocaine), procaine
	(Novacain).
Batrachotoxins	A toxin that prevents the closure of voltage-gated sodium channels. It doesn't kill
	the animal, but slows the animal. Unlike STX and TTX, it doesn't jam the channel,
	but prevents it from closing. It is found in the skin of many tropical frogs in the
	Amazon.
Ciguatoxins	Toxins end up in fish (produced by dinoflagellates) and produce a lowering of the
	threshold voltage for the opening of the channel.
Psychoactice drugs: top 5	1) Caffeine
	2) Alcohol
	3) Nicotine (tobacco)
	4) Arecoline (areca/betel palm nut)
	5) Cannabinoids (cannabis/marijuana)
Caffeine	Isolated from coffee in 1820. Caffeine is a stimulant that leads to increased
	alertness/wakefulness, increased blood pressure and heart rate, increased kidney
	output, and increased metabolic rate. Adenosine works as a neurotransmitter to inhibit function: caffeine is an
Adenosine as NT	antagonist. Caffeine is made from adenine.
Tobacco, nicotine	Nicotine is an agonist at nicotine acetylcholine receptors. It leads to stimulation
Tobacco, filcotifie	and relaxation. It is thought to be a chemical synthesized for protection.
Alcohol, ethyl alcohol	A type of sedative-hypnotic drug that is ingested. Least poisonous alcohol to the
Alconol, cary alconol	human body. Enhances the inhibitory effect of GABA.
Sedative-hypnotic drugs	Drugs that produce sedative or relaxing effects in low doses and hypnotic or sleep-
	inducing effects in high doses.
Barbiturates,	Barbiturates are a pharmaceutical sedative-hypnotic drug that was first introduced
benzodiazepines	into medicine in the early 20 th century. They treat anxiety and insomnia and were
	among the first synthetic drugs. Chemicals include secobarbital, amobarbital,
	pentobarbital, and thiopental.
	Benzodiazepines were also introduced by the same company as barbiturates and
	have similar effects.
	Dath an adative humatic drugs
CARA recenter	Both are sedative-hypnotic drugs.
GABA receptor	GABA receptors are ionotropic receptors that increase inhibition in the CNS by
	increasing the flow of chloride ions into neuron, giving rise to the sedative- hypnotic effects.
Therapeutic index	The ratio of the lethal dose in organisms to the effective/therapeutic dose in
	organisms. The closer the number is to 1, the less threshold that exists for an
	effective dose versus a toxic one.
Lec 11 – Psychoactive Drugs	
Erythroxylum coca,	Origins in <i>Erythroxylum coca</i> . Its most potent effect is to react with reuptake
cocaine	transporters and block them in dopamine and norepinephrine systems.
Effects of cocaine: at	The ultimate effect of cocaine is the magnified effect of the dopamine and
synapses, CNS and	norepinephrine transmitters. Effects include increased wakefulness, stamina,
autonomic	focused attention, positive mood and euphoria. It is a sympathomimetic, leads to

Psychosis	The loss of contact with reality that includes delusions (false beliefs about what is
	taking place) and hallucinations (seeing or hearing things that aren't there).
Amphetamine and related	Related to cocaine, these molecules make reuptake transporters leaky so there is
molecules: effects at	excessive nerve stimulation at dopamine or norepinephrine systems. The effects
synapses	on the body are the same as cocaine.
Opium, opium poppy	Most concentrated way to get opium out is through opium poppy seed pod sap.
(Papaver somniferum),	Opium was used for cough suppression, treatment of diarrhea, and analgesia (pain
morphine, opioids	relief). Morphine was discovered by Friedrich Serturner. Opioids are molecules
	that have the same effects as opium in the nervous system (not necessarily a
	similar shape). Semi-synthetic opioids include etorphine, hydropmorphone, and
	oxycodone.
Endorphins, opiod	Endorphines are the endogenous (natural in the body) opioids. They bind to opiod
receptors	receptors (metabotropic receptors) to produce similar effects. Endorphis are
	polypeptide chain neurotransmitter.
LSD	Psychoactive properties were discovered by Albert Hofmann in 1943. Lysergic
	acid diethylamide is one of the most potent psychoactive drugs, needing only a
	few micrograms to have a great effect on the body.
Albert Hofmann	The man who discovered LSD. His discovery of LSD was a groundbreaking
	discovery of how chemical signaling could be closely associated with the workings
	of the brain and how one's mental experience is determined by the chemical
	interactions within the brain.
Maria Sabina	She introduced ethnobotanic practices with psychoactive drugs into the
	mainstream. She was a shaman who used psilocybe mushrooms to improve her
	experience.
Psilocyvin, DMT,	All psychoactive drugs that are used by tribal peoples in their practices for
mesacaline, peyote cactus	medicinal effects (DMT – Amazon) and hallucinations (Psilocybin, peyote –
	shaman).
Lec 12 – Psychoactive Drugs	shaman).
	shaman).
Lec 12 – Psychoactive Drug	shaman). spt. II and Gap Junctions
Lec 12 – Psychoactive Drugs Shaman	shaman). pt. II and Gap Junctions See Shaman in CH 1
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled	shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance	shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug.
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance	shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance Cannabis	 shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance Cannabis	 shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has been identified as a major psychoactive chemical constituent of cannabis
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance Cannabis	 shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance Cannabis	shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has been identified as a major psychoactive chemical constituent of cannabis (identified in 1964). It is a very hydrophobic and easily crosses the blood-brain
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance Cannabis	shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has been identified as a major psychoactive chemical constituent of cannabis (identified in 1964). It is a very hydrophobic and easily crosses the blood-brain barrier. The receptor for THC is a cannabinoid receptor that appears to be the most abundant of all GPCR receptors.
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance <i>Cannabis</i> THC	 shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has been identified as a major psychoactive chemical constituent of cannabis (identified in 1964). It is a very hydrophobic and easily crosses the blood-brain barrier. The receptor for THC is a cannabinoid receptor that appears to be the most abundant of all GPCR receptors. Agonists of the cannabinoid receptor including anadamide and 2-
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance Cannabis THC Endocannabinoids, anandamide	 shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has been identified as a major psychoactive chemical constituent of cannabis (identified in 1964). It is a very hydrophobic and easily crosses the blood-brain barrier. The receptor for THC is a cannabinoid receptor that appears to be the most abundant of all GPCR receptors. Agonists of the cannabinoid receptor including anadamide and 2-arachidonylglycerol (2AG).
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance Cannabis THC Endocannabinoids,	 shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has been identified as a major psychoactive chemical constituent of cannabis (identified in 1964). It is a very hydrophobic and easily crosses the blood-brain barrier. The receptor for THC is a cannabinoid receptor that appears to be the most abundant of all GPCR receptors. Agonists of the cannabinoid receptor including anadamide and 2-arachidonylglycerol (2AG). Changing the strength of the synapses as a signal passes backwards into a
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance Cannabis THC Endocannabinoids, anandamide	 shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has been identified as a major psychoactive chemical constituent of cannabis (identified in 1964). It is a very hydrophobic and easily crosses the blood-brain barrier. The receptor for THC is a cannabinoid receptor that appears to be the most abundant of all GPCR receptors. Agonists of the cannabinoid receptor including anadamide and 2-arachidonylglycerol (2AG). Changing the strength of the synapses as a signal passes backwards into a presynaptic neuron. Takes place at trillions of synapses. Endocannabinoid
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance <i>Cannabis</i> THC Endocannabinoids, anandamide	 shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has been identified as a major psychoactive chemical constituent of cannabis (identified in 1964). It is a very hydrophobic and easily crosses the blood-brain barrier. The receptor for THC is a cannabinoid receptor that appears to be the most abundant of all GPCR receptors. Agonists of the cannabinoid receptor including anadamide and 2-arachidonylglycerol (2AG). Changing the strength of the synapses as a signal passes backwards into a presynaptic neuron. Takes place at trillions of synapses. Endocannabinoid retrograde signaling is believed to be involved in the dynamic tuning of the
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance Cannabis THC Endocannabinoids, anandamide Retrograde signaling	 shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has been identified as a major psychoactive chemical constituent of cannabis (identified in 1964). It is a very hydrophobic and easily crosses the blood-brain barrier. The receptor for THC is a cannabinoid receptor that appears to be the most abundant of all GPCR receptors. Agonists of the cannabinoid receptor including anadamide and 2-arachidonylglycerol (2AG). Changing the strength of the synapses as a signal passes backwards into a presynaptic neuron. Takes place at trillions of synapses. Endocannabinoid retrograde signaling is believed to be involved in the dynamic tuning of the strength of synapses.
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance Cannabis THC Endocannabinoids, anandamide Retrograde signaling Gap junctions/electrical	 shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has been identified as a major psychoactive chemical constituent of cannabis (identified in 1964). It is a very hydrophobic and easily crosses the blood-brain barrier. The receptor for THC is a cannabinoid receptor that appears to be the most abundant of all GPCR receptors. Agonists of the cannabinoid receptor including anadamide and 2-arachidonylglycerol (2AG). Changing the strength of the synapses as a signal passes backwards into a presynaptic neuron. Takes place at trillions of synapses. Endocannabinoid retrograde signaling is believed to be involved in the dynamic tuning of the strength of synapses. Gap junctions are connections between neurons that allow for chemical
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance Cannabis THC Endocannabinoids, anandamide Retrograde signaling	 shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has been identified as a major psychoactive chemical constituent of cannabis (identified in 1964). It is a very hydrophobic and easily crosses the blood-brain barrier. The receptor for THC is a cannabinoid receptor that appears to be the most abundant of all GPCR receptors. Agonists of the cannabinoid receptor including anadamide and 2-arachidonylglycerol (2AG). Changing the strength of the synapses as a signal passes backwards into a presynaptic neuron. Takes place at trillions of synapses. Endocannabinoid retrograde signaling is believed to be involved in the dynamic tuning of the strength of synapses. Gap junctions are connections between neurons that allow for chemical communication though channel proteins called connexons (shared cytoplasm).
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance Cannabis THC Endocannabinoids, anandamide Retrograde signaling Gap junctions/electrical	 shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has been identified as a major psychoactive chemical constituent of cannabis (identified in 1964). It is a very hydrophobic and easily crosses the blood-brain barrier. The receptor for THC is a cannabinoid receptor that appears to be the most abundant of all GPCR receptors. Agonists of the cannabinoid receptor including anadamide and 2-arachidonylglycerol (2AG). Changing the strength of the synapses as a signal passes backwards into a presynaptic neuron. Takes place at trillions of synapses. Endocannabinoid retrograde signaling is believed to be involved in the dynamic tuning of the strength of synapses. Gap junctions are connections between neurons that allow for chemical communication though channel proteins called connexons (shared cytoplasm). Electrical synapses involve neurotransmitter-protien receptor communication
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance Cannabis THC Endocannabinoids, anandamide Retrograde signaling Gap junctions/electrical synapses	 shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has been identified as a major psychoactive chemical constituent of cannabis (identified in 1964). It is a very hydrophobic and easily crosses the blood-brain barrier. The receptor for THC is a cannabinoid receptor that appears to be the most abundant of all GPCR receptors. Agonists of the cannabinoid receptor including anadamide and 2-arachidonylglycerol (2AG). Changing the strength of the synapses as a signal passes backwards into a presynaptic neuron. Takes place at trillions of synapses. Endocannabinoid retrograde signaling is believed to be involved in the dynamic tuning of the strength of synapses. Gap junctions are connections between neurons that allow for chemical communication though channel proteins called connexons (shared cytoplasm). Electrical synapses involve neurotransmitter-protien receptor communication allowing for various action potential or GPCR reactions to commence.
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance Cannabis THC Endocannabinoids, anandamide Retrograde signaling Gap junctions/electrical synapses Connexon (channel, made	 shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has been identified as a major psychoactive chemical constituent of cannabis (identified in 1964). It is a very hydrophobic and easily crosses the blood-brain barrier. The receptor for THC is a cannabinoid receptor that appears to be the most abundant of all GPCR receptors. Agonists of the cannabinoid receptor including anadamide and 2-arachidonylglycerol (2AG). Changing the strength of the synapses as a signal passes backwards into a presynaptic neuron. Takes place at trillions of synapses. Endocannabinoid retrograde signaling is believed to be involved in the dynamic tuning of the strength of synapses. Gap junctions are connections between neurons that allow for chemical communication though channel proteins called connexons (shared cytoplasm). Electrical synapses involve neurotransmitter-protien receptor communication allowing for various action potential or GPCR reactions to commence. Connexons are channels made up of several connexin proteins; when 2 connexons
Lec 12 – Psychoactive Drugs Shaman Schedule One controlled substance Cannabis THC Endocannabinoids, anandamide Retrograde signaling Gap junctions/electrical synapses	 shaman). pt. II and Gap Junctions See Shaman in CH 1 A drug that is completely illegal in the United States due to its high potential for abuse, no medical use, and a lack of accepted safety for use of the drug. A plant categorized in the schedule one group. There are about 60 cannabinoids present in the one cannabis plant. They affect the GPCR cannabinoid receptors One of about 60 chemically related molecules found in the Cannabis plant that has been identified as a major psychoactive chemical constituent of cannabis (identified in 1964). It is a very hydrophobic and easily crosses the blood-brain barrier. The receptor for THC is a cannabinoid receptor that appears to be the most abundant of all GPCR receptors. Agonists of the cannabinoid receptor including anadamide and 2-arachidonylglycerol (2AG). Changing the strength of the synapses as a signal passes backwards into a presynaptic neuron. Takes place at trillions of synapses. Endocannabinoid retrograde signaling is believed to be involved in the dynamic tuning of the strength of synapses. Gap junctions are connections between neurons that allow for chemical communication though channel proteins called connexons (shared cytoplasm). Electrical synapses involve neurotransmitter-protien receptor communication allowing for various action potential or GPCR reactions to commence.

	Channels that have all the same connexin types are homotypic and channels with
	a mixture of connexins are heterotypic.
Connexin (individual	Connexins form the building blocks of gap junctions. There are 12 per gap
proteins)	junction. Connexins are named for their molecular weight: Cx36 = connexin, 36
	dalton weight.
Electrical synapse vs.	Electrical synapses are slower and unidirectional whereas chemical synapses are
chemical synapse – speed	faster and bidirectional
and directionality issues	
Lec 13 – Epilepsy and Neuro	
seizure	Convulsions, memory loss, and/or loss of consciousness brought about by the
	cascade of uninhibited excitation of unusually large amounts in neural synapses.
	Characterized by hyperexcitability and hypersynchrony.
EEG	A noninvasive method of functional brain imaging where electrodes are put on the
	head of a subject and real-time imaging is shown of brain activity. The spatial
	resolution = many cm, the temporal resolution = milliseconds.
Traumatic brain injury	Traumatic Brain Injuries generally involve the breakdown of the blood-brain
(ТВІ)	barrier and is the leading cause of death in young adults. Traumatic brain injuries
	lead to the loss of astrocytes because of that blood-brain barrier breakage, leading
	to other issues.
albumin	Albumin is a protein complex in the human blood serum that is not supposed to
	be in the brain, but can control some brain centers. It can bind to TGF-βR2
	receptors on neural cells, which express GFAP that starts alert/repair system,
	opening up the blood/brain barrier.
Astrocytes at synapses	Astrocytes are glial cells that help from the blood-brain barrier, and are
,	responsible for repair after traumatic brain injuries. After a TBI, astrocytes are lost,
	leading to a loss of K ⁺ immuno-rectifying channels and a neutralization of the K ⁺
	potential.
Hyperexcitation and	Hyperexcitation and hypersynchrony are expressed as a result of astrocyte loss
hypersynchrony	(due to TBI). The TBI causes action potential freezing, waiting for a trigger. This
//···/	trigger can easily be agitated by glutamate buildup at the synapse due to the lack
	of reuptake transporters.
Human genome: size, %	The human genome is 23 chromosomes/2C, and 3 billion base pairs long
transcribed, % translated	
	Greater than 75% of the DNA is transcribed to RNA
	Less than 5% of the genome encodes for protein
Stem cells	Stem cells are progenitor cells to more specialized cells and can mutate based on
	signals and gene activation. They form from the embryo, hence the common
	prefix embryonic stem cells.
Neural tube	Forms after the embryonic disk, this forms into the entire CNS including the spinal
	cord.
Cell differentiation	The process of a cell changing from one cells to another, governed by transcription
	factors and proteins. Cell differentiation is responsible for the formation of
	different tissues.
Transcription factors	Protein complexes composed of one or more proteins that work in tandem with
	RNA polymerase to transcribe certain genes.
Neurotrophins, nerve	Neurotrophins are nerve growth factors that are important for cell growth and
growth factor (NGF)	survival. NGF (nerve growth factor) was the first neurotrophin to be discovered.
BIOWIN IACION (INGF)	In general, neurotrophins are responsible for for cell growth, differentiation,
Noural progonitor calls	migration, and synaptogenesis in neurons.
Neural progenitor cells	Embryonic stem cells that give rise to the nervous system through a process of
	neurogenesis and gliogenesis.

Overproduction of cells	Some areas of the human body during embryonic development see instances of
followed by apoptosis	cells that exist in areas in which they don't belong. They are useful for
	development, but not after. Generally these cells undergo programmed cell death
	(apoptosis) via proteolytic caspases. Large numbers of neurons are eliminated if
	not promoted by the nerve growth factors; in some regions of the brain, 50% of
	the neurons can die from apoptosis.
Growth cone	The growth cone is the region on the tip of an axon that possess mechanisms of
	sensitivity, motility, and guidance. These were hypothesized by Rámon y Cajal
	after examining microscopic images of growing neurons in chicken embryos.
Lec 14 – Chemo-Affinity an	d Neuroplasticity
Cytoskeleton	Microtubules, microfilaments, intermediate filaments. They help form the
	structure and motility of the cell. Microtubules are composed of tubulin and
	microfilaments are composed of actin.
Microtubule,	Microtubules are long polymers of tubulin dimers. They form the skeleton of the
microfilament, actin,	cell and form "railways" for the movement of chromosomes and organelles.
tubulin	Microfilaments are formed from actin polymers and aid in cellular contraction,
	(neural) growth, and cytokinesis.
Roger Sperry	Through experiments, he discovered the difference between the right and the left
	brain. Through an optic nerve of frog experiment, Sperry hypothesized through 3
	cases (cut optic nerve-normal; cut optic muscles and rotate 180 degrees-skewed;
	both-skewed) the chemo-affinity hypothesis.
Chemo-affinity hypothesis	The hypothesis from Roger Sperry that neurons use specific chemical signals to
	guide their wiring during development and neural regeneration.
Neurotrophins, nerve	Neurotrophins are the chemicals that guide the wiring of neurons as described by
growth factors: contact	the chemo-affinity hypothesis.
vs. soluble	
	Contact – proteins on one cell that bind to receptors on another cell. The growing
	neuron grows in (or away from) the direction of the contact. Examples include
	Ephrin, Netrin, Neuropilin, Plexin, Semaphorin, Slit, and Robo
	Soluble – NGF, glia-derived nerotrophic factor (GDNF), and NT3 are examples of
	proteins that promote the growth and survival of a neuron without specific cell-
	cell contact.
Pruning	Over the development of a brain in an organism, synapses that are used become
	stabilized and strengthened, while those that aren't used are eliminated (pruned).
Neuroplasticity	The capacity of neural circuitry to alter its properties: synapses and numbers.
Lec 15 – Lesions and Struct	ural Imaging
Embryonic and adult	Embryonic neurogenesis is the formation of neurons from embryonic stem cells.
neurogenesis	Adult neurogenesis and myelination reaches its minimum past the age of 20. Glial
	cell formation, synapse strengthening and pruning, myelination, and sprouting of
	dendritic spires all continue at robust rates during childhood (5 wk – 5 mo).
Hippocampal dentate	Both are sites for adult neurogenesis, with the hippocampal dentate gyrus forming
gyrus, subventricular	new neurons and rewiring and the subventricular zone existing as a site for neural
zone	stem cells.
Regeneration in the	GBC (globos basal cells) and HBC (horizontal basal cells) are stem cells that replace
olfactory system	neurons in the olfactory gland. GBC are responsible for regeneration, while HBC is
	responsible for regeneration and GBC formation.
Brain damage and brain-	Damage to the brain can affect actions, thoughts, feelings, and perceptions about
mind connection	the world and one's identity.
Lesion: stroke, tumor,	An injury to the brain that includes stroke, tumor, physical trauma, and brain
traumatic injury, disease	diseases.

Phineas Gage	A foreman who had a rod busted through his head (nonfatal). He lived but his
	behavior drastically changed for the irritable.
Static/structural brain	Static/structural brain imaging allows for the visualization of the structure of the
imaging	brain. Methods include posthumous dissection, surgery, x-ray photography, and
	Computed Axial Tomography (CAT/CT).
x-ray imaging	William Röntgen discovered x-rays in 1895. Since, they have been used for static
	brain imaging, where finer tuning of x-rays allows for tissue discrimination in
	photographs. It is invasive and implemented in CAT scans to produce 3D
	structures. 3D x-ray pictures help improve the ability to determine the location of
	a lesion.
Computed axial	An invasive brain imaging method where x-ray axial photographs are taken to
tomography (CAT, CT)	create a 3D structure of an observed area, allowing for better treatment and
	identification of the lesion and its location.
Magnetic resonance	A noninvasive brain imaging method where the spin property of hydrogen atoms
imaging (MRI)	is used to create a 3D reconstruction of the brain. It does this using magnets.
Nuclear Spin, NMR	Nuclear spin is a property of atoms that involves the spin of its nucleus and
	alignment top or bottom. NMR readings are measurements of spin that allow for
	the identification of molecules based on the spin properties of their component
	atoms.
Lec 16 – Dynamic Imaging	
nvasive vs non-invasive	Invasive imaging involves the use of methods that involve direct contact with the
imaging	brain or harmful processes to the body. Non-invasive imaging is not harmful to
	the body and does not involve cutting into the body.
Dynamic brain imaging	Imaging the brain in action; this generally involves recording the processes of the
	brain while a subject undergoes tasks. Dynamic brain imaging helps researchers
	understand the functional aspect of the brain.
Wilder Penfield	Wilder Penfield was the pioneer of brain mapping using electrical stimulation and
	recording. He was the first to implement the use of electrocortocography (ECoG).
	He utilized ECoG to treat epileptic patients and study feelings and their
	relationship with the brain.
EEG and ECoG	Electroencephalography (EEG) – a noninvasive method of recording the processes
	of the brain with good temporal resolution, but poor spatial resolution. EEG
	results are more easily contaminated by non-cerebral activities.
	Electrocorticography (ECoG) – an invasive method of recording the processes of
	the brain with good spatial and temporal resolution. Two types include epidural
	ECoG (above the dura mater) and subdural ECoG (below the dura mater).
	Both are forms of dynamic brain imaging. Moving action potentials create
	electromagnetic fields that pass through surrounding tissues.
Hans Berger	This German scientist pioneered the use of human EEG in 1920s. He was inspired
	by the potential long-distance sibling communication he experienced. He gave
	EEG its name.
Epileptogenic tissue	Neural tissues that serve as the nexuses for epileptic activity in the brain.
Temporal and spatial	These refer to the resolution of dynamic brain imaging apparent in localizing and
resolution	timing brain activity:
	EEG – temporal: miliseconds, spatial: many cm
	MEG – temporal: miliseconds, spatial: mm
	PET – temporal: seconds to minutes, spatial: cm
	fMRI – temporal: seconds, spatial: mm
Prosopagnosia	fMRI – temporal: seconds, spatial: mmProsopagnosia is a condition of face-blindedness: the inability to distinguish and

Magnetoencephalography	A type of dynamic brain imaging in which magnets cancel out background
(MEG)	magnetic noise and measure the 1 picotesla strength electrical signals put out by
(IVEG)	the brain. SQUID tech (superconduction quantum interference device) assists in
	magnetic cancellation.
Magnetic field strength:	Magnetic fields can be measured in terms of gauss and tesla:
Gauss, Tesla	1 Tesla = 10,000 Gauss
	Earth's Magnetic field = 0.5 gauss
	Refrigerator door = 50 gauss
	Ambient magnetic noise (power cables, etc.) = 0.1 microtesla/0.01 gauss
fMRI, hemoglobin, BOLD	fMRI stands for functional magnetic resonance imaging. It uses the same machine
signal	as an MRI, but analyzes the brain's functional properties. After taking a control
-	image (no stimulus), it takes series of images of the brain, looking at the hydrogen
	atoms in water molecules in the vicinity of hemoglobin (higher concentration =
	more hemoglobin = more brain activity). Hemoglobin produces a different
	magnetic perturbation effect on its local environment when oxygenated, making it
	easier to determine locations of increased neural activity. BOLD signal (blood-
	oxygen level dependence) is the measure of increased flow of blood into more
	active regions of the brain.
Lec 17 – PET and Heavy Elen	nents
Positron emission	A type of functional/dynamic brain imaging that involves measuring the energy
tomography (PET)	emissions from positron/electron matter cancellation.
Stable vs unstable atomic	Stable isotopes exist without any form of nuclear decay. Unstable atomic isotopes
isotopes	undergo nuclear decay in which it loses electrons or nuclear particles.
Radioactivity/radioactive	Radioactive objects are radioactive because the atoms that compose the object
decay	are decaying subatomic particles. Radioactive atoms decay at a rate measured by
	their half-life. A half-life is equivalent to how long it takes for half of the
	radioactive atoms in a mass to decay. Radioactive decay comes in 2 forms: alpha
	decay (⁴ He decay), beta-minus decay (electron decay) and beta-plus decay
	(positron decay).
Positron emission,	Positron emission is a form of beta decay in which an isotope loses a beta-plus
annilation, gamma	particle (positron) and a nuclear proton is converted into a neutron. Annilation
photons	occurs when a matter particle (electron) collides with an anti-matter particle
	(positron) with the result being the mass cancellation of both particles and a conversion of that mass into energy (gamma photons). The gamma photons
	radiate opposite and in various directions of each other allowing for accurate
	triangulation of radiation origin points.
PET isotopes: fluorine,	The primary radioactive isotopes used include ¹¹ C, ¹⁵ O, and ¹⁸ F. The isotopes have
oxygen, carbon	half-lives of 20, 2, and 110 minutes respectively. They are generally inserted into
	biological molecules like water (¹⁵ O) and glucose (¹⁸ F), where they are tracked in
	movement or in accumulation. ¹¹ C is used to track the location of
	neurotransmitter receptors in the brain (e.g. dopamine)
Image subtraction	Happens in fMRI. One can take an image taken of brain activity and subtract a
5	control picture (representative of basic activity) from it to find areas of function
	for a specific action/feeling.
Ernest Lawrence	Faculty member at UC Berkeley who discovered the ability to make radioactive
	isotopes through a cyclotron. His work led to the discovery of many heavy
	elements and the Manhattan project.
Cyclotron	A particle accelerator that allows for the smashing of atoms together to create
	heavier elements/isotopes.
Trans-uranium elements	Elements that exist past Uranium on the periodic table that were discovered using
	the cyclotron:

	Plutonium
	Americium
	Curium
	Berkelium – 1400 year lifetime
	Californium
	Einsteinium
	Francium
	Nobelium
	Lawrencium
	Mendelevium
	Ruthefordium
	Seaborgium
	 Livermorium – 60 ms lifetime
Lec 18 – Olfaction	
Sensation, perception	Sensory perception constitutes the collection of information (sensation) via
Sensation, perception	sensory organs and the analysis/interpretation of the nervous system
	(perception).
Bacterial chemotaxis	Bacteria can detect and respond to physical stimuli in their environment.
	Chemoreceptor proteins respond to particular chemicals and detect attractants.
	There is a bias toward attractants by tumbling (flagellate movement) less in that
	direction
<i>E. coli</i> random	
walk/swim: runs and	<i>E. coli</i> moves in a way that it swims straight and tumbles about for a moment when its flagella changes direction; after a while, it goes to swimming again. It
tumbles	moves with directional bias due to physical stimuli by tumbling less in that
tumbles	direction. Its movement is described as a random walk.
Olfaction	The ability to smell: detect airborne stimuli that may elicit an emotional and/or
Onaction	
	sensational response. Humans have the capacity to discern 10,000 different odors.
Olfactory receptor cells	Olfactory receptor cells are modified neurons with dendrites that branch into the
Onactory receptor cens	nasal epithelia and are coated with cilia (GPCRs) (surface area). They also have
	axons that connect with the olfactory nerve.
Olfactory stem cells	Stem cells that exist to replace malfunctioning or dead olfactory receptor cells.
Cilia	Extensions of the cytoplasm, membrane and microtubules that allow for increased
Cilia	surface area for more receptor proteins.
Olfactory recentor	Proteins embedded in the membrane of the olfactory receptor cells that bind to
Olfactory receptor proteins	certain molecule shapes and send a signal via GPCR reactions to the rest of the
proteins	cell. There are 350 different kinds of olfactory receptors in humans.
Pseudogene	A gene in the genome that encodes for a nasal receptor protein, but is not used
i scuudgene	for the organism.
Essential oil	Aromatic odors: the "flavor" component of plants. Sometimes referred to as the
	most distinctive/powerful molecule in the smell.
Aromaci mixturas of	Aromas are formed generally from the mixture of molecules activating different
Aromas; mixtures of molecules vs single	olfactory receptor proteins at varying intensities. This is how we can distinguish
molecules	between 10,000 different kinds of odors with 350 cells.
Spices as aromatics	Spices were very popular during the Age of Exploration, primarily because of their
spices as aromatics	spices were very popular during the Age of Exploration, primarily because of their smell.
Sulfur thiolo	
Sulfur, thiols	Molecules with these elements/groups tend to be very stinky, and is a major
Anosmio, spesific and	component of skunk spray.
Anosmia: specific and	Anosmia is the loss of scent. Specific anosmia refers to the loss of sensitivity to a
general	specific type of smell. General anosmia is the complete loss of smell.

Olfactory bulb	
Onactory build	The olfactory bulb receives the axons from olfactory receptor cells and is located
	above and adjacent to the nasal cavity. The synapses formed are between the
	receptor cells and the mitral cells of the olfactory bulb.
Connections to limbic	The mitral cells of the olfactory bulb send axons into other forebrain regions
system and cortex	including the pyriform cortex, the thalamus, and orbitofrontal cortex.
	Connections with the hippocampus and hypothalamus are also present.
Pheromones,	Pheromones are the olfactory chemical used for interspecies communication. It is
vomeronasal organ	used for sex, attraction, and social status. The vomeronasal organ is responsible
	for pheromone detection.
Lec 19 – Gustation	
Taste bud	A cluster of taste receptor cells located on the tongue, upper palate, and cheeks.
	Each taste bud contains about 100 taste receptor cells. Taste receptor cells
	contain microvilli structures embedded with receptor proteins. There are also
	stem cells that exist to replace/form new taste buds.
Stem cells and gustatory	Stem cells within a taste bud are not primordial stem cells that can differentiate
cell replacement	into any cell, but cells that have flexibility in differentiating into various types of
	taste receptor cells with different taste receptor proteins. Stem cells replace taste
	receptor cells every two weeks.
Receptor cell types: salt,	Taste receptor cells can be broken down into 5 generic types:
bitter, sweet, sour,	
umami	Salt: stimulated by the Na ⁺ in NaCl flowing in through taste receptor cell channels,
	initiating an action potential.
	<i>Sour</i> : similar mechanism as salt, but with H ⁺ from acidic substances.
	Bitter: reaction of molecules with GPCRs on one of 30 taste receptor proteins.
	Various different molecules can be perceived as bitter, potentially for defense
	(toxins=bitter). Among things that are bitter are plant alkaloids including caffeine
	and cocaine.
	<i>Sweet</i> : reaction of molecules with GPCRs on one of 2 taste receptor proteins.
	Synthetic molecules are created to replace the taste of glucose/sucrose with fewer
	molecules – less calories. Synthetic molecules include aspartame (180x sweet,
	most common), saccharin (1 st , 500x sweet), Sucralose (600x sweet), and Neotame
	(10,000x sweet).
	(10,000x sweet). <i>Umami</i> : savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG
	(10,000x sweet). <i>Umami</i> : savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and
	(10,000x sweet). Umami : savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with
-	(10,000x sweet). Umami : savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with detecting proteins.
Taste receptor proteins:	 (10,000x sweet). <i>Umami</i>: savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with detecting proteins. See above for specific details. Different taste receptor cells use ion channels and
ion channels and GPCR	 (10,000x sweet). Umami: savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with detecting proteins. See above for specific details. Different taste receptor cells use ion channels and GPCR reactions to determine taste.
ion channels and GPCR Gustatory neural	 (10,000x sweet). <i>Umami</i>: savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with detecting proteins. See above for specific details. Different taste receptor cells use ion channels and GPCR reactions to determine taste. Cranial nerve fibers carrying taste sensory information > lower brainstem > divide
ion channels and GPCR	 (10,000x sweet). Umami: savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with detecting proteins. See above for specific details. Different taste receptor cells use ion channels and GPCR reactions to determine taste.
ion channels and GPCR Gustatory neural	 (10,000x sweet). <i>Umami</i>: savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with detecting proteins. See above for specific details. Different taste receptor cells use ion channels and GPCR reactions to determine taste. Cranial nerve fibers carrying taste sensory information > lower brainstem > divide in 2 pathways:
ion channels and GPCR Gustatory neural	 (10,000x sweet). Umami: savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with detecting proteins. See above for specific details. Different taste receptor cells use ion channels and GPCR reactions to determine taste. Cranial nerve fibers carrying taste sensory information > lower brainstem > divide in 2 pathways: Pathway 1 > thalamus > insula (primary gustatory cortex) > somatosensory cortex
ion channels and GPCR Gustatory neural	 (10,000x sweet). Umami: savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with detecting proteins. See above for specific details. Different taste receptor cells use ion channels and GPCR reactions to determine taste. Cranial nerve fibers carrying taste sensory information > lower brainstem > divide in 2 pathways: Pathway 1 > thalamus > insula (primary gustatory cortex) > somatosensory cortex (parietal lobe). Related to the perceptual qualities of different tastes.
ion channels and GPCR Gustatory neural pathways	 (10,000x sweet). Umami: savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with detecting proteins. See above for specific details. Different taste receptor cells use ion channels and GPCR reactions to determine taste. Cranial nerve fibers carrying taste sensory information > lower brainstem > divide in 2 pathways: Pathway 1 > thalamus > insula (primary gustatory cortex) > somatosensory cortex (parietal lobe). Related to the perceptual qualities of different tastes. Pathway 2 > hypothalamus & amygdala. Related to emotional associations.
ion channels and GPCR Gustatory neural pathways Capsicum annum	 (10,000x sweet). Umami: savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with detecting proteins. See above for specific details. Different taste receptor cells use ion channels and GPCR reactions to determine taste. Cranial nerve fibers carrying taste sensory information > lower brainstem > divide in 2 pathways: Pathway 1 > thalamus > insula (primary gustatory cortex) > somatosensory cortex (parietal lobe). Related to the perceptual qualities of different tastes. Pathway 2 > hypothalamus & amygdala. Related to emotional associations. The chili plant native to South America that is an example of spicy hotness in taste.
ion channels and GPCR Gustatory neural pathways	 (10,000x sweet). Umami: savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with detecting proteins. See above for specific details. Different taste receptor cells use ion channels and GPCR reactions to determine taste. Cranial nerve fibers carrying taste sensory information > lower brainstem > divide in 2 pathways: Pathway 1 > thalamus > insula (primary gustatory cortex) > somatosensory cortex (parietal lobe). Related to the perceptual qualities of different tastes. Pathway 2 > hypothalamus & amygdala. Related to emotional associations. The chili plant native to South America that is an example of spicy hotness in taste.
ion channels and GPCR Gustatory neural pathways Capsicum annum	 (10,000x sweet). Umami: savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with detecting proteins. See above for specific details. Different taste receptor cells use ion channels and GPCR reactions to determine taste. Cranial nerve fibers carrying taste sensory information > lower brainstem > divide in 2 pathways: Pathway 1 > thalamus > insula (primary gustatory cortex) > somatosensory cortex (parietal lobe). Related to the perceptual qualities of different tastes. Pathway 2 > hypothalamus & amygdala. Related to emotional associations. The chili plant native to South America that is an example of spicy hotness in taste. The molecule that is found to be associated with hotness in foods. Proteins in the mouth and on the skin have been found to operate as receptors for capsaicin
ion channels and GPCR Gustatory neural pathways Capsicum annum	 (10,000x sweet). Umami: savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with detecting proteins. See above for specific details. Different taste receptor cells use ion channels and GPCR reactions to determine taste. Cranial nerve fibers carrying taste sensory information > lower brainstem > divide in 2 pathways: Pathway 1 > thalamus > insula (primary gustatory cortex) > somatosensory cortex (parietal lobe). Related to the perceptual qualities of different tastes. Pathway 2 > hypothalamus & amygdala. Related to emotional associations. The chili plant native to South America that is an example of spicy hotness in taste. The molecule that is found to be associated with hotness in foods. Proteins in the mouth and on the skin have been found to operate as receptors for capsaicin (TRPV1 receptors). The activation of the receptor via capsaicin molecules and
ion channels and GPCR Gustatory neural pathways Capsicum annum	 (10,000x sweet). <i>Umami</i>: savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with detecting proteins. See above for specific details. Different taste receptor cells use ion channels and GPCR reactions to determine taste. Cranial nerve fibers carrying taste sensory information > lower brainstem > divide in 2 pathways: Pathway 1 > thalamus > insula (primary gustatory cortex) > somatosensory cortex (parietal lobe). Related to the perceptual qualities of different tastes. Pathway 2 > hypothalamus & amygdala. Related to emotional associations. The chili plant native to South America that is an example of spicy hotness in taste. The molecule that is found to be associated with hotness in foods. Proteins in the mouth and on the skin have been found to operate as receptors for capsaicin (TRPV1 receptors). The activation of the receptor via capsaicin molecules and temperature activate Ca⁺⁺ ion channels. In terms of perception, the chili hot and
ion channels and GPCR Gustatory neural pathways Capsicum annum	 (10,000x sweet). Umami: savory flavor, ruled by glutamate receptors (GPCR) and glutamate/MSG reactions. Recently discovered by Japanese scientists (Kikunae Ikeda - 1909) and accepted by the western world. Glutamate = amino acid, detection helps with detecting proteins. See above for specific details. Different taste receptor cells use ion channels and GPCR reactions to determine taste. Cranial nerve fibers carrying taste sensory information > lower brainstem > divide in 2 pathways: Pathway 1 > thalamus > insula (primary gustatory cortex) > somatosensory cortex (parietal lobe). Related to the perceptual qualities of different tastes. Pathway 2 > hypothalamus & amygdala. Related to emotional associations. The chili plant native to South America that is an example of spicy hotness in taste. The molecule that is found to be associated with hotness in foods. Proteins in the mouth and on the skin have been found to operate as receptors for capsaicin (TRPV1 receptors). The activation of the receptor via capsaicin molecules and

	(TDDM9 recentors) They operate similarly to conscisin recenters in being
	(TRPM8 receptors). They operate similarly to capsaicin receptors, in being activated by menthol and temperature (37 °C).
laathiaaumataa	
Isothiocynates	The molecule found to be associated with pungency in foods (wasabi, horseradish, etc.). The perceptions are stimulated by receptor proteins (TRPA1 receptors) that
	affect calcium ion channels. They are found around the body. Also activated by heat.
TRP channels	
	TRP channels are found all over the body and mouth where they are associated with spicy, pungent hotness and coolness. Within the skin, they are responsible
	for these feelings and for feelings of pain. The feelings associated with TRP
	channels are not considered tastes because they operate and channel through the
	nervous system in different ways.
Flavor	A combination of smell, taste, pungency, and texture, and its perception. The 3
Flavor	taste like perceptions (hot, cool, and pungent), the 5 tastes, and the 350 olfactory
	receptor proteins allow for a ton of unique taste combinations.
Lec 20 – Hearing (pt. I)	receptor proteins allow for a ton of unique taste combinations.
Sound: physical and	Sound can be defined by its physical property, in that cound exists when a
	Sound can be defined by its physical property, in that sound exists when a
perceptual properties	variation in air pressure created by sound energy propagating through compressions and rarefactions is created by an action. Sound can also be defined
	by its perceptual property that a sound exists when it is detected by something.
Human hearing range	The hearing range of a human rests between 100 Hz and 20,000 Hz.
(frequency)	
Speed of sound	The speed of sound is 1100 fps or 335 m/s or 750 mph
Timbre	A property of a waveform that describes the complexity of the vibration. They can
lindle	be described using amplitude versus frequency graphs and Fourier analysis.
	Generally characterized by the overtones.
Joseph Fourier and	Joseph Fourier was a French mathematician who described how any complex
Fourier analysis	waveform can be described as the sum of component, simple sinusoidal waves.
rounce analysis	Fourier analysis is that practice of decomposing a wave into component forms.
Perception of one's own	The perception of one's own voice is different from others' perception of it
voice	because one's ears pick up bodily vibrations from the skull's conduction of it. That
Volce	added component changes our perception of our own voice.
Cochlea, basilar	The Cochlea is the spiral bone structure that houses the basilar membrane in fluid
membrane, Fourier	(named after Greek/Latin for spiral shell). The basilar membrane is a specialized
analysis	membrane that vibrates at different frequencies, with higher frequencies vibrating
	closer to the ossicles and oval window. Hair cells line the basilar membrane, and
	through this unique form of vibration, the basilar membrane already does its own
	form of Fourier analysis.
Hair cells (inner and	Hair cells contain hairs/cilia attached to one end with hairs attached to others
outer)	through tiny molecular cables. Disturbing the hairs activate the K ⁺ channels,
	leading to depolarization and the opening of Ca ⁺⁺ channels, triggering the release
	of a neurotransmitter into the synaptic cleft with the cranial nerve number eight.
	Inner hair cells compose most of the hair cells that send signals to the spiral
	ganglion and the cochlear nucleus. There are about 3500 of these cells per
	cochlea. Outer hair cells, numbering 12000 cells per cochlea make fewer
	connections to the spiral ganglion and have much more input to the brainstem.
	Outer hair cells may be limitedly associated with adjusting basilar membrane
	sensitivity.
Prestin	The outer hair cells contain this protein molecule. Elongates and contracts as a
	function of membrane-potential changes. This pushes against basilar membrane,
	changing sensitivity and stiffness.
Auditory nerve	The nerve that connects the cochlea to the brain.

Auditory neural nathways	Hair cell > post synaptic dentrite of 8 th cranial nerve > spiral ganglion > medulla >
Auditory neural pathways into brain	
into brain	cochlear nucleus > superior olive > lateral lemniscus > inferior colliculus > medial
Duine and audite muse where	geniculate nucleus (MGN) > primary auditor cortex A1 (in cerebral cortex)
Primary auditory cortex,	Instrumental for auditory analysis. Spatial mapping of basilar membrane has been
A1	preserved, with neurons in A1 responding to the signal stimulus similarly. This is
	referred to a tonotopic representation.
Directional sound	Easier to determine with lower frequencies. There are two mechanisms with
perception in humans and	which this can work accurately: through Interaural time differences and Interaural
other animals	level differences – analyzing the minute differences between time and volume
	between the the two ears in regards to a source of sound.
Hearing loss: infection,	Hearing loss can be brought on through infection (permanent damage due to
genetic, noise-induced	toxins and/or bacteria invading the ear), genetics (the presence of ion channels or
	lack of structures in hair cells of the cochlea that lead to malfunctioning ears), and
	noise exposure (noise too loud and constant exposure to moderately loud sounds
	leading to excitotoxic over-stimulation). Only a few thousand hair cells need to
	die for deaf effects.
Lec 21 – Hearing (pt. II) and	
Vestibular system	3D orientation allowing for spatial awareness as we walk, move, and turn in
	comparison to gravity and acceleration. Allows for the maintenance of balance.
Semicircular system	There are 3 orthogonal, semicircular canals that are attached to the cochlea in the
	inner ear that are attached to two bulbous structures called the utricle and
	saccule. They all form a fluid filled structure and the basis of the vestibular
	system. The 3 canals form an x, y, and z system with each 90° from each other.
Semicircular canals	The three semicircular canals are the horizontal canal, superior canal, and
	posterior canal
Utricle, saccule	The utricle and saccule contain hair receptor cells that detect the movement of
	fluid in the semicircular canals. Changes in movement create different changes in
	flow within the canals and allow for 3D spatial orientation.
Otolith	Microscopic calcium carbonate stones that are suspended in the fluid above the
	hair cells. They add an increased inertial component to the vestibular system
	allowing for better balance.
Pitch, fundamental	Pitch is how we distinguish frequency. A chord contains multiple frequencies, with
frequency, overtones,	the fundamental frequency being the primary/base pitch (generally louder) and
timbre	the overtones being the additional frequencies that contribute to the unique
	sound, or timbre of the sound wave.
Tonotopic organization	The organization of simple sinusoidal waves in that compose a sound through
	Fourier analysis via instruments or the basilar membrane.
Acoustic shadow	An area where sound waves fail to propagate due to the physical/topographic
	disruption of the waves in space.
Electromagnetic spectrum	The spectrum of wavelengths of electromagnetic energy:
	Wavelength: low \rightarrow high
	Gamma ray > X-Ray > UV ray > Visible light > IR > Radio Wave
	Energy: high \rightarrow low
Visible light	Electromagnetic radiation that falls between 380 nm and 740 nm of wavelength.
	This light we can detect with our eyes.
Retina	The section of the eye consisting of a layer of photosensitive cells and layers of
Retina	The section of the eye consisting of a layer of photosensitive cells and layers of interconnected nerve cells. There are also crosses of blood vessels and a region
Retina	interconnected nerve cells. There are also crosses of blood vessels and a region
Retina Macula/fovea	

Blind spot	Each eye has a blind spot due to the lack of photosensitive cells in an area
bina spor	dominated by the optic nerve. The brain compensates for these blind spots with
	predictions and sights from the other eye.
Photoreceptor cells: rods,	There are two types of photoreceptor cells: rods and cones. Rods are
cones	characterized by a rod shape and rhodopsin (496). These cells pick up dimmer
	light and lack the ability to detect color. Cones come in three types utilizing cone-
	opsin: cone 419 (S opsin), cone 531 (M opsin), and cone 559 (L opsin). These
	cones are responsible for the detection of color. S opsin – violet & blue, M opsin –
	green and yellow, L opsin – orange and red. M and L opsin codes are found on the
Lec 22 – Vision (pt. II)	X – chromosome.
Retinal achomatopsia	Characterized by the complete loss of cones in a eyes: 100,000,000 rods, no cones.
	Extreme sensitivity to light characterized.
Photoreceptor cells: inner	The outer segment is characterized by membranous disks with the photoreceptor
and outer segments	proteins (10 ⁸ opsins); the outer segment shape is what gives the rods and cones
	their names. Inner segments contain the usual cell organelles and funtions.
Rhodopsin, cone opsins	The photosensitive proteins (about 350 AA long) that contain retinal, a molecule
	that—under light—shape shifts, starting a GPCR event. Rhodopsin are grayscale,
	light sensitive and cones are color, less light sensitive.
Retinal, retinol (vitamin	Retinal is a molecule that can be synthesized from vitamin A and beta carotene. It
A), beta-carotene	shape shifts under stimulus from light photons, triggering GPCR events in
	photoreceptive cells.
Isomerization (cis to	The change of a molecule around a double bond between a <i>cis</i> - (the molecule
trans)	parts face each other) and <i>trans</i> - (the molecule parts are opposite each other). It
GCPR intracellular	usually requires some input of energy.
cascade	Light stimulates the opsin which activates a G-Protein, activating cGMP (phosphodiesterase enzyme). This leads to decreased GMP and the closure of Na ⁺
Cascade	channels. This leads to a membrane potential change, and an increase in
	neurotransmitter release and an enormous amplification across neural cells.
Retina: bipolar cells	Ganglion cells are where the axons come together to form the optic nerve. The
ganglion cells	bipolar cells contain the amacrine and horizontal cells and serve as the bridge to
0 0	the ganglion cells.
	Inner eye > ganglion cells > bipolar cells > photoreceptive cells
Retina: horizontal cells,	Amacrine cells help regulate the bipolar cells and are responsible for 70% of the
amacrine cells	input to the ganglion cells. Horizontal cells also aid in the input from the
	photoreceptor cells, but they also aid in the adjustment of the eyes in seeing well
	in dim and bright light.
Receptive field	Because of light-focusing protperties of the eye, photoreceptor cells will only
	respond to stimuli originating from specific regions of visual space. The receptive
	field property assists in tracking where the stimuli originated from.

Map: world to retina to cortex	Right visual field Temporal Temporal Pulvinar nucleus Lateral geniculate nucleus Superior colliculus Optic radiation
LGN, visual cortex (V1 etc)	The Lateral geniculate nucleus (LGN) has two parts: one on each hemisphere of the brain. Visual information from the left side goes to the right side of the brain and vice-versa. The LGN then has axons that connect with the primary visual cortex (V1, V2, V3, etc.)
Scotoma, hemianopia	Scotoma is the existence of a blind spot due to a lesion in the V1 area of the primary visual cortex. Hemianopia is the complete loss of sight due to a similar
	lesion.
Cortical achromatopsia	Cortical achromatopsia is the impaired or complete loss of color vision due to a lesion in the V4 region of the primary visual cortex.
Motion blindness	Motion blindness occurs when there is a lesion in the V5 region of the primary visual cortex
Prosopagnosia	Face-blindedness: the inability to distinguish and remember faces.
Blindsight	The ability to guess (correctly) about visual stimuli in a blind region of perception, possibly due to the actions in the superior colliculus. Literally sight in spite of blindness.
Superior colliculus	The superior collicus exists in the midbrain and receives about 10% of the visual information from the eye. Information sent to the superior colliculus eventually makes its way to the primary visual cortex and is responsible for unaware responses to visual stimuli and blindsight.

READER

Shaman People who cultivate connection with their inner recesses and the other worlds in order to facilitate healing and divination. Hallucination Perceptual experience in the absence of external stimulus, brought on by hallucinogens. 2001: A Space Odyssey See Lecture Table Hominid See Lecture Table Hominid evolution Ardipithecus afarensis – 3-4 mya Australopithecus afarensis – 3-4 mya Australopithecus afarensis – 1-2 mya Homo neaderthalensis – 30,000-300,000 y Homo sapiens – 200,000-now y Genus Australopithecus See Lecture Table Hominid brain size See Lecture Table Hominid brain size See Lecture Table Mind See Lecture Table Mind See Lecture Table What it means "to be" To be aware of your own mental experiences or sense of self. In other words to somebody or something have a mind or consciousness by the preceding definitions. Mind See Lecture Table William almes See Lecture Table Villiam almes See Lecture Table William almes See Lecture Table William almes See Lecture Table William almes See Lecture Table Villiam almes See Lecture Table Villiam almes <th>CH 1</th> <th></th>	CH 1	
Hallucination Perceptual experience in the absence of external stimulus, brought on by hallucinogens. 2001: A Space Odyssey See Lecture Table Hominid See Lecture Table Hominid evolution Ardipithecus farinidus – 4.4 mya Australopithecus africanus – 1.5-3 mya Australopithecus africanus – 1.5-3 mya Australopithecus africanus – 1.5-3 mya Australopithecus africanus – 1.5-3 mya Homo nabilis – 1.5-2 mya Homo neanderthalensis – 30,000-300,000 y Homo neanderthalensis – 30,000-300,000 y Homo neanderthalensis – 30,000-300,000 y Homo neanderthalensis – 30,000-300,000 y Homo neanderthalensis – 30,000-300,000 y Hominid brain size See Lecture Table Genus Homo See Lecture Table Mind See Lecture Table Otos aware of your own mental experiences or sense of self. In other words to asmebody or something See Lecture Table See Lecture Table What it means "to be" See Lecture Table William James See Lecture Table Neurons, glia See Lecture Table Vertiliam James See Lecture Table See Lecture Table See Lecture Table Neurons, glia <t< th=""><th>Shaman</th><th>People who cultivate connection with their inner recesses and the other worlds</th></t<>	Shaman	People who cultivate connection with their inner recesses and the other worlds
Aslucinogens.2001: A Space OdysseySee Lecture TableHominidSee Lecture TableHominid evolutionArdipithecus afarensis – 3-4 mya Australopithecus afarensis – 3-4 mya Australopithecus afarensis – 3-4 mya Australopithecus afarensis – 3-4 mya Australopithecus afarensis – 3-2 mya Homo neanderthalensis – 30,000-300,000 y Homo sapiens – 200,000-now yGenus AustralopithecusSee Lecture TableHominid brain sizeSee Lecture TableGenus AustralopithecusSee Lecture TableHominid brain sizeSee Lecture TableConsciousnessSee Lecture TableWhildSee Lecture TableConsciousnessSee Lecture TableWilliam JamesSee Lecture TableWilliam JamesSee Lecture TableNeurons, gliaSee Lecture TableSest Lecture TableSee Lecture TableVilliam JamesSee Lecture TableSeytem in animalsSee Lecture TableBasic structure of or provousSee Lecture TableCerebral LorterSee Lecture TableCerebral LorterSee Lecture TableSeruture of ocrists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.See Lecture TableSee Lecture TableCerebral LorterSee Lecture TableCerebral LorterSee Lecture TableSee Lecture TableSee Lecture TableCerebral Indmarks:See Lecture TableCerebral LorterSee Lecture TableSee Lecture TableSee Lecture TableCerebral LorterSee		in order to facilitate healing and divination.
2001: A Space Odyssey See Lecture Table Hominid See Lecture Table Hominid evolution Ardigithecus ramidus – 4.4 mya Australopithecus africanus – 1.5-3 mya Australopithecus africanus – 1.5-3 mya Australopithecus obsustus – 1-2 mya Homo neaderthalensis – 30,000-300,000 y Homo erectus – 0.5-1.5 mya Homo enaderthalensis – 30,000-300,000 y Homo sapiens – 200,000-now y See Lecture Table Genus Australopithecus See Lecture Table Mind Genus Homo See Lecture Table Mominid See Lecture Table Mind Consciousness See Lecture Table Mhating See Lecture Table Mind See Lecture Table Mind See Lecture Table Mind bave a mind or consciousness by the preceding definitions. Mind -body problem See Lecture Table William James See Lecture Table Vent it means "to be" See Lecture Table Verlaus James See Lecture Table See Lecture Table See Lecture Table See Lecture Table See Lecture Table See Lecture Table See Lecture Table See	Hallucination	
2001: A Space Odyssey See Lecture Table Hominid See Lecture Table Hominid evolution Ardigithecus ramidus – 4.4 mya Australopithecus africanus – 1.5-3 mya Australopithecus africanus – 1.5-3 mya Australopithecus obsustus – 1-2 mya Homo neaderthalensis – 30,000-300,000 y Homo erectus – 0.5-1.5 mya Homo enaderthalensis – 30,000-300,000 y Homo sapiens – 200,000-now y See Lecture Table Genus Australopithecus See Lecture Table Mind Genus Homo See Lecture Table Mominid See Lecture Table Mind Consciousness See Lecture Table Mhating See Lecture Table Mind See Lecture Table Mind See Lecture Table Mind bave a mind or consciousness by the preceding definitions. Mind -body problem See Lecture Table William James See Lecture Table Vent it means "to be" See Lecture Table Verlaus James See Lecture Table See Lecture Table See Lecture Table See Lecture Table See Lecture Table See Lecture Table See Lecture Table See		
HominidSee Lecture TableHominid evolutionArdipithecus ramidus – 4.4 mya Australopithecus afarensis – 3-4 mya Australopithecus obstus – 1-2 mya Homo neanderthalensis – 30,000-300,000 y Homo neanderthalensis – 30,000-300,000 y Homo senderthalensis – 30,000-300,000 y Homo see Lecture TableGenus AustralopithecusSee Lecture TableGenus HomoSee Lecture TableConsciousnessSee Lecture TableMindSee Lecture TableConsciousnessSee Lecture TableWhat it means "to be" somebody or something have a mind or consciousness by the preceding definitions. Mind-body problemSee Lecture TableCH2William JamesSee Lecture TableEvolution of nervous system in animalsBasic structure of corestral brain and cerebellum), and spinal cord.Cerebral lobes: frontal parietal, temporal, cocipitalCerebral lobes: frontal parietal, temporal, occipitalCerebral lobes: forntal parietal, temporal, sulcus separates the frontal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableCerebral landmarks: sulcus separates the frontal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableCerebral landmarks: sulcus separates the frontal lobe	2001: A Space Odyssey	
Australopithecus afarensis – 3-4 mya Australopithecus africanus – 1.5-3 mya Australopithecus robustus – 1-2 mya Homo habilis – 1.5-2 mya Homo rectus – 0.5-1.5 mya Homo sapiens – 200,000-300,000 y Homo sapiens – 200,000-300,000 y Homo sapiens – 200,000-now yGenus AustralopithecusSee Lecture Table See Lecture TableGenus HomoSee Lecture Table See Lecture TableMindSee Lecture Table To be aware of your own mental experiences or sense of self. In other words to have a mind or consciousness by the preceding definitions.Mind-body problemSee Lecture TableWilliam JamesSee Lecture TableNeurons, gliaSee Lecture Table See Lecture TableEvolution of nervous system in animalsSee Lecture TableBasis structure of cerebral tobes: frontal and cerebellum), and spinal cord.Gystem (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture Table See Lecture TableGenus (gystem second		See Lecture Table
Australopithecus afarensis - 3-4 mya Australopithecus ofricanus - 1.5-3 mya Australopithecus obustus - 1-2 mya Homo habilis - 1.5-2 mya Homo erectus - 0.5-1.5 mya Homo sapiens - 200,000-300,000 y Homo sapiens - 200,000 endowed sa	Hominid evolution	Ardipithecus ramidus – 4.4 mya
Australopithecus robustus – 1-2 mya Homo habilis – 1.5-2 mya Homo neadierthalensis – 30,000-300,000 y Homo sapiens – 200,000-now yGenus AustralopithecusSee Lecture TableGenus HomoSee Lecture TableHominid brain sizeSee Lecture TableMindSee Lecture TableConsciousnessSee Lecture TableWhat it means "to be" somebody or something have a mind or consciousness by the preceding definitions.Mind-body problemSee Lecture TableWilliam JamesSee Lecture TableWilliam JamesSee Lecture TableSystem in animalsSee Lecture TableBasic structure of correbrate brain and cerebellum), and spinal cord.Consist of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral lobes: frontal sulcus (sulci)See Lecture TableCerebral lobes: frontal ungitudinal fissure, central sulcus sulcus separates the frontal lobe from the parietal lobe.The longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the temporal lobe from the parietal lobe.Andreas VesaliusSee Lecture TableCerebral solues: dura, arachnoid, peieSee Lecture TableCerebral fluid (CSF)See Lecture TableCerebral Indumarks: usus separates the temporal lobe from the frontal and parietal lobes.Andreas VesaliusSee Lecture TableCerebral Indumarks: usus separates the temporal lobe from the frontal and parietal lobes.Andreas Vesalius		
Homo habilis – 1.5-2 myaHomo erectus – 0.5-1.5 myaHomo neanderthalensis – 30,000-300,000 yHomo sapiens – 200,000-now yGenus AustralopithecusSee Lecture TableGenus HomoSee Lecture TableHomid brain sizeSee Lecture TableMindSee Lecture TableConsciousnessSee Lecture TableWhat it means "to be"To be aware of your own mental experiences or sense of self. In other words to somebody or something have a mind or consciousness by the preceding definitions.Mind-body problemSee Lecture TableCH 2Wiliam JamesWiliam JamesSee Lecture TableEvolution of nervousSee Lecture TableConsists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.System in animalsSee Lecture TableCerebral obes: frontal parietal, temporal, occipitalSee Lecture TableCerebral lobes: frontal sulcus separates the femispheres of the brain. The central sulcus separates the frontal lobe from the parietal lobe.Andreas VesaliusSee Lecture TableCerebral fissure separates the temporal lobe from the parietal lobe.Andreas VesaliusSee Lecture TableCerebral fissure separates the temporal lobe from the parietal lobe.Andreas VesaliusSee Lecture TableCerebral Indemarks: longitudinal fissure separates the frontal and parietal lobes.Andreas VesaliusSee Lecture TableCerebras Infinition (CSF) See Lecture TableMeninges: dura, arachnoid, pieSee Lecture Table<		Australopithecus africanus – 1.5-3 mya
Homo erectus – 0.5-1.5 myaHomo neanderthalensis – 30,000-300,000 yHomo neanderthalensis – 30,000-300,000 yHomo sapiens – 200,000-now yGenus AustrolopithecusSee Lecture TableGenus HomoSee Lecture TableMindSee Lecture TableConsciousnessSee Lecture TableWhat it means "to be"To be aware of your own mental experiences or sense of self. In other words to have a mind or consciousness by the preceding definitions.Mind-body problemSee Lecture TableCH 2William JamesWilliam JamesSee Lecture TableNeurons, gliaSee Lecture TableEvolution of nervous system in animalsSee Lecture TableBasic structure of coresbrait (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral cortexSee Lecture TableCerebral lobes: frontal and cerebellum), and spinal cord.See Lecture TableCerebral lobes: frontal sociatalSee Lecture TableCerebral lobes: frontal see Lecture TableSee Lecture TableCerebral lobes: frontal see Lecture TableSee Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableAndreas VesaliusSee Lecture TableAndreas VesaliusSee Lecture TableAndreas VesaliusSee Lecture TableRené DescartesSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableMeninges: dura, arachnoid, pieSe		Australopithecus robustus – 1-2 mya
Homo neanderthalensis – 30,000-300,000 y Homo sapiens – 200,000-now yGenus AustralopithecusSee Lecture TableHominid brain sizeSee Lecture TableHominid brain sizeSee Lecture TableMindSee Lecture TableConsciousnessSee Lecture TableWhat it means "to be" somebody or something have a mind or consciousness by the preceding definitions.Mind-body problemSee Lecture TableCH 2Utiliam JamesWilliam JamesSee Lecture TableNeurons, gliaSee Lecture TableEvolution of nervous system in animalsSee Lecture TableBasic structure of vertebrate brain and cerebellum), and spinal cord.Consists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla uprietal, temporal, occipitalCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral Indmarks: sulcus Jastre, central sulcus separates the frontal lobe from the parietal lobes.See Lecture TableAndreas VesaliusSee Lecture TableSee Lecture TableCerebral Indmarks: sulcus separates the temporal lobe from the parietal lobes.See Lecture TableCerebral Indmarks: sulcus separates the temporal lobe from the parietal lobes.The longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the temporal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableRené DescartesSee Lecture TableLing GalvaniSee Lecture Table		Homo habilis – 1.5-2 mya
Homo sapiens – 200,000-now yGenus AustralopithecusSee Lecture TableGenus HomoSee Lecture TableHominid brain sizeSee Lecture TableMindSee Lecture TableConsciousnessSee Lecture TableWhat it means "to be"To be aware of your own mental experiences or sense of self. In other words to have a mind or consciousness by the preceding definitions.Mind-body problemSee Lecture TableWilliam JamesSee Lecture TableWilliam JamesSee Lecture TableWuiltion of nervous system in animalsSee Lecture TableBasic structure of cerebral cortexConsists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral Indmarks: sulcus, lateral fissure separates the frontal lobe from the parietal lobe. The lateral fissure sugerates the temporal lobe from the parietal lobe. The lateral fissure sulcus, lateral fissure separates the frontal lobe from the parietal lobe. The lateral fissure sulcus, lateral fissure separates the temporal lobe from the parietal lobe. The lateral fissure separates the temporal lobe from the parietal lobe. The lateral fissure separates the temporal lobe from the parietal lobe. The lateral fissure separates the temporal lobe from the parietal lobe. The lateral fissure separates the temporal lobe from the parietal lobe. The lateral fissure separates the temporal lobe from the fortal and parietal lobes.Andreas VesaliusSee Lecture TableAndreas VesaliusSee Lectur		Homo erectus – 0.5-1.5 mya
Genus AustralopithecusSee Lecture TableGenus HomoSee Lecture TableHominid brain sizeSee Lecture TableMindSee Lecture TableConsciousnessSee Lecture TableWhat it means "to be"To be aware of your own mental experiences or sense of self. In other words to have a mind or consciousness by the preceding definitions.Mind-body problemSee Lecture TableCH 2Villiam JamesSee Lecture TableSee Lecture TableVultion of nervous system in animalsSee Lecture TableBasic structure of corebral cortexConsists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral cortexSee Lecture TableSee Lecture TableSee Lecture TableCerebral landmarks: uslucus, lateral fissure, central sulcus separates the frontal lobe from the parietal lobe. The lateral fissure separates the temporal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableCerebrospinal fluid (CSF)See Lecture TableLuigi GalvaniSee Lecture TableLuigi GalvaniSee Lecture Table		Homo neanderthalensis – 30,000-300,000 y
Genus HomoSee Lecture TableHominid brain sizeSee Lecture TableMindSee Lecture TableConsciousnessSee Lecture TableWhat it means "to be"To be aware of your own mental experiences or sense of self. In other words to somebody or something have a mind or consciousness by the preceding definitions.Mind-body problemSee Lecture TableCH 2Evolution of nervous system in animalsBasic structure of vertebrate brainConsists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks: usulcus, lateral fissure separates the temporal lobe from the parietal lobe.The longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the temporal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableCerebral Infigure separates the temporal lobe from the frontal and parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pie cerebrospinal fluid (CSF)See Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture TableLuigi GalvaniSee Lecture Table		Homo sapiens – 200,000-now y
Hominid brain sizeSee Lecture TableMindSee Lecture TableConsciousnessSee Lecture TableWhat it means "to be"To be aware of your own mental experiences or sense of self. In other words to have a mind or consciousness by the preceding definitions.Mind-body problemSee Lecture TableCH2Evolution of nervous system in animalsBasic structure of overtebrate brainConsists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks: longitudinal fissure, central sulcus, lateral fissureThe longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the temporal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableRené DescartesSee Lecture TableRené DescartesSee Lecture TableLugi GalvaniSee Lecture TableSee Lecture TableSee Lecture TableCerebral landmarks: pieThe longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the frontal lobe from the parietal lobe.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableRené DescartesSee Lecture TableRené DescartesSee Lecture TableLugi GalvaniSee Lecture Table	Genus Australopithecus	See Lecture Table
MindSee Lecture TableConsciousnessSee Lecture TableWhat it means "to be"To be aware of your own mental experiences or sense of self. In other words to have a mind or consciousness by the preceding definitions.Mind-body problemSee Lecture TableCH 2Villiam JamesWilliam JamesSee Lecture TableNeurons, gliaSee Lecture TableEvolution of nervous system in animalsSee Lecture TableBasic structure of vertebrate brain and cerebellum), and spinal cord.See Lecture TableCerebral cortexSee Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks: sulcus, lateral fissureThe longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the temporal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableMindy and cCFFSee Lecture TableCerebral Indimarks: sulcus, lateral fissureThe longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the frontal lobe from the parietal lobe.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table	Genus Homo	See Lecture Table
ConsciousnessSee Lecture TableWhat it means "to be" somebody or somethingTo be aware of your own mental experiences or sense of self. In other words to have a mind or consciousness by the preceding definitions.Mind-body problemSee Lecture TableCH 2William JamesSee Lecture TableNeurons, gliaSee Lecture TableEvolution of nervous system in animalsSee Lecture TableBasic structure of vertebrate brain and cerebellum), and spinal cord.Consists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks: sulcus, lateral fissure separates the temporal lobe from the parietal lobe.The longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the temporal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableMicus, lateral fissure separates the temporal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableCerebrospinal fluid (CSF) see Lecture TableSee Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table	Hominid brain size	See Lecture Table
What it means "to be" somebody or somethingTo be aware of your own mental experiences or sense of self. In other words to have a mind or consciousness by the preceding definitions.Mind-body problemSee Lecture TableCH 2Evelocity TableWilliam JamesSee Lecture TableNeurons, gliaSee Lecture TableEvolution of nervous system in animalsSee Lecture TableBasic structure of vertebrate brainConsists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks: sulcus, lateral fissure separates the temporal lobe from the parietal lobe.The longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the temporal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableCerebrospinal fluid (CSF) see Lecture TableSee Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture TableLuigi GalvaniSee Lecture Table	Mind	See Lecture Table
somebody or somethinghave a mind or consciousness by the preceding definitions.Mind-body problemSee Lecture TableCH 2Villiam JamesSee Lecture TableNeurons, gliaSee Lecture TableEvolution of nervous system in animalsSee Lecture TableBasic structure of vertebrate brainConsists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks: sulcus, lateral fissure separates the frontal lobe from the parietal lobes.The longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the frontal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableCerebrospinal fluid (CSF)See Lecture TableLugi GalvaniSee Lecture TableLugi GalvaniSee Lecture Table	Consciousness	See Lecture Table
Mind-body problemSee Lecture TableCH 2William JamesSee Lecture TableNeurons, gliaSee Lecture TableEvolution of nervous system in animalsSee Lecture TableBasic structure of vertebrate brainConsists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral cortexSee Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks: sulcus, lateral fissure separates the temporal lobe from the parietal lobes.The longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the temporal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableRené Descartes Luigi GalvaniSee Lecture Table	What it means "to be"	To be aware of your own mental experiences or sense of self. In other words to
CH 2William JamesSee Lecture TableNeurons, gliaSee Lecture TableEvolution of nervous system in animalsSee Lecture TableBasic structure of vertebrate brainConsists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral cortexSee Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks: sulcus, lateral fissureThe longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the frontal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table	somebody or something	
CH 2William JamesSee Lecture TableNeurons, gliaSee Lecture TableEvolution of nervous system in animalsSee Lecture TableBasic structure of vertebrate brainConsists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral cortexSee Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks: sulcus, lateral fissureThe longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the frontal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table	Mind-body problem	
Neurons, gliaSee Lecture TableEvolution of nervous system in animalsSee Lecture TableBasic structure of vertebrate brainConsists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral cortexSee Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks: sulcus, lateral fissure separates the temporal lobe from the parietal lobes.The longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the temporal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableRené Descartes Luigi GalvaniSee Lecture Table		
Evolution of nervous system in animalsSee Lecture TableBasic structure of vertebrate brainConsists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral cortexSee Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks:The longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the frontal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table	William James	See Lecture Table
Evolution of nervous system in animalsSee Lecture TableBasic structure of vertebrate brainConsists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral cortexSee Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks:The longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the frontal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table	Neurons, glia	See Lecture Table
Basic structure of vertebrate brainConsists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral cortexSee Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks:The longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the frontal lobe from the parietal lobe. The lateral fissure separates the temporal lobe from the frontal and parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table		See Lecture Table
Basic structure of vertebrate brainConsists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla and cerebellum), and spinal cord.Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral cortexSee Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks:The longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the frontal lobe from the parietal lobe. The lateral fissure separates the temporal lobe from the frontal and parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table	system in animals	
Gyrus (gyri), sulcus (sulci)See Lecture TableCerebral cortexSee Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks: longitudinal fissure, central sulcus, lateral fissureThe longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the frontal lobe from the parietal lobe. The lateral fissure separates the temporal lobe from the parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table		Consists of a forebrain (cerebrum), midbrain (optic tectum), hindbrain (medulla
Cerebral cortexSee Lecture TableCerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks:The longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the frontal lobe from the parietal lobe. The lateral fissure separates the temporal lobe from the frontal and parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table	vertebrate brain	and cerebellum), and spinal cord.
Cerebral lobes: frontal parietal, temporal, occipitalSee Lecture TableCerebral landmarks: longitudinal fissure, central sulcus, lateral fissureThe longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the frontal lobe from the parietal lobe. The lateral fissure separates the temporal lobe from the frontal and parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table	Gyrus (gyri), sulcus (sulci)	See Lecture Table
parietal, temporal, occipitalImage: Cerebral landmarks: Ingitudinal fissure, central sulcus separates the frontal lobe from the parietal lobe. The lateral fissure separates the temporal lobe from the parietal lobes. The lateral fissure separates the temporal lobe from the frontal and parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table	Cerebral cortex	See Lecture Table
occipitalImage: Cerebral landmarks:The longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the frontal lobe from the parietal lobe. The lateral fissure separates the temporal lobe from the frontal and parietal lobes.Image: Separates the temporal lobe from the frontal and parietal lobes.See Lecture TableImage: Separates the temporal lobe from the frontal and parietal lobes.See Lecture TableImage: Separates the temporal lobe from the frontal and parietal lobes.See Lecture TableImage: Separates the temporal lobe from the frontal and parietal lobes.See Lecture TableImage: Separates the temporal lobe from the frontal and parietal lobes.See Lecture TableImage: Separates the temporal lobe from the frontal and parietal lobes.See Lecture TableImage: Separates the temporal fluid (CSF)See Lecture TableImage: See Lecture TableSee Lecture TableImage: See Le	Cerebral lobes: frontal	See Lecture Table
Cerebral landmarks:The longitudinal fissure separates the hemispheres of the brain. The central sulcus separates the frontal lobe from the parietal lobe. The lateral fissure separates the temporal lobe from the frontal and parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table	parietal, temporal,	
Iongitudinal fissure, central sulcus, lateral fissuresulcus separates the frontal lobe from the parietal lobe. The lateral fissure separates the temporal lobe from the frontal and parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table	occipital	
sulcus, lateral fissureseparates the temporal lobe from the frontal and parietal lobes.Andreas VesaliusSee Lecture TableMeninges: dura, arachnoid, pieSee Lecture TableCerebrospinal fluid (CSF)See Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table	Cerebral landmarks:	The longitudinal fissure separates the hemispheres of the brain. The central
Andreas Vesalius See Lecture Table Meninges: dura, arachnoid, pie See Lecture Table Cerebrospinal fluid (CSF) See Lecture Table René Descartes See Lecture Table Luigi Galvani See Lecture Table	longitudinal fissure, central	sulcus separates the frontal lobe from the parietal lobe. The lateral fissure
Meninges: dura, arachnoid, pie See Lecture Table Cerebrospinal fluid (CSF) See Lecture Table René Descartes See Lecture Table Luigi Galvani See Lecture Table	sulcus, lateral fissure	separates the temporal lobe from the frontal and parietal lobes.
pie Cerebrospinal fluid (CSF) See Lecture Table René Descartes See Lecture Table Luigi Galvani See Lecture Table	Andreas Vesalius	See Lecture Table
Cerebrospinal fluid (CSF)See Lecture TableRené DescartesSee Lecture TableLuigi GalvaniSee Lecture Table	Meninges: dura, arachnoid,	See Lecture Table
René Descartes See Lecture Table Luigi Galvani See Lecture Table		
Luigi Galvani See Lecture Table	Cerebrospinal fluid (CSF)	See Lecture Table
-	René Descartes	See Lecture Table
Nerve cell (neuron), axon. Dendrites are extensions that lead to the neuron cell body (the soma) and the	Luigi Galvani	See Lecture Table
The set of	Nerve cell (neuron), axon,	Dendrites are extensions that lead to the neuron cell body (the soma) and the
dendrite axon is the myelin-coated extension that connects to the soma through the axon	dendrite	axon is the myelin-coated extension that connects to the soma through the axon
hillock and terminates at the axon terminus.		hillock and terminates at the axon terminus.
Camillo Golgi See Lecture Table	Camillo Golgi	See Lecture Table
Santiago Ramón y Cajal See Lecture Table	Santiago Ramón y Cajal	See Lecture Table
Golgi Stain See Lecture Table		See Lecture Table

СН 3	
Chemistry, alchemy	Chemistry is the science of matter and its transformations. Alchemy was the
	progenitor to chemistry. Alchemy comes from <i>al kamia</i> - the Arabic for Egypt
	(black-earth land)
Dimitri Mendeleev	See Lecture Table
Periodic table of elements	The table of elements developed by Dimitri Mendeleev in which elements are
	organized by their chemical properties including atomic number, category, and
	atomic weight.
Elements of living	Living organisms are primarily composed of C, H, O, N, Ca, P, S, Na, K, Cl
organisms	
lon, cation, anion	See Lecture Table
Molecule	See Lecture Table
Covalent chemical bond	A chemical bond in which atoms share electrons with each other. Most
	nonmetal molecules are bonded with covalent bonds.
Organic molecule	See Lecture Table
Symbolic language of	The molecules are drawn in such a way that the carbon-hydrogen bonds are non-
molecular structure	existent and carbon is replaced by a joint.
Hydrocarbon	See Lecture Table
Petroleum	Petroleum is the mixture of basic hydrocarbons (only C and H) of various sizes
	and is used in modern fuels (fossil fuel).
Polarity	See Lecture Table
Hydrogen bond	See Lecture Table
Hydrophilic, hydrophobic,	See Lecture Table
lipophilic lipophobic	
Fats/lipids	See Lecture Table
Phospholipid bilayer	See Lecture Table
membrane	
Amino acids	See Lecture Table
Proteins peptide bonds	See Lecture Table
Protein structural levels:	See Lecture Table
primary, secondary,	
tertiary	
Carbohydrate, sugar	See Lecture Table
Nucleic acid, DNA, RNA	See Lecture Table
CH 4	
Gene	See Lecture Table
Charles Darwin	See Lecture Table
Gregor Mendel	See Lecture Table
Neils Bohr	See Lecture Table
Max Delbruck	See Lecture Table
Erwin Schrodinger	See Lecture Table
Oswald Avery	See Lecture Table
Hershey-Chase Experiment	See Lecture Table
Francis Crick, James	See Lecture Table
Watson	
Double Helical Structure of	See Lecture Table
DNA	
Triplet Nucleotide codon	See Lecture Table
Genetic code	See Lecture Table
Transcription	See Lecture Table
Translation	See Lecture Table

CH 5	
Diffusion	See Lecture Table
Phospholipid bilayer and	See Lecture Table
ion permeability	
Na/K pump	See Lecture Table
ATP	See Lecture Table
Energy consumption by	The basal energy consumption of the body is about 1440 kcal per day or 1 kcal
body and brain	per min
Intracellular/extracellular	See Lecture Table
ion concentration	
differences in neurons	
Membrane potential and	See Lecture Table
resting potential	
Hyperpolarization and	See Lecture Table
depolarization	
Ion-channel proteins	See Lecture Table
Alan Hodgkin and Andrew	See Lecture Table
Huxley	
Squid axon	See Lecture Table
Action potential	See Lecture Table
Voltage-gated ion channels	See Lecture Table
Refractory period of the	See Lecture Table
action potential	
Propagation of the action	See Lecture Table
potential	
Myelin	See Lecture Table
Oligodendrocytes and	See Lecture Table
Schwann Cells	
Nodes of Ranvier	See Lecture Table
Salutatory conduction	See Lecture Table
СН 6	
Electrical synapse	See Lecture Table
Chemical synapse	See Lecture Table
Chemical synapse in action	When an action potential reaches the end of a synapse, the depolarization activates voltage-gated calcium channel to facilitate the diffusion of calcium ions into the cell. The calcium binds to proteins in the SNARE complex (protiens in vesicle membranes that are posed to attach to the neural membrane and fuse) which facilitate exocytosis of neurotransmitters in storage vesicles.
Storage vesicles, synaptic	Storage vesicles are the media in which the neurotransmitters are stored within
cleft	a neuron. When exocytosis happens, the neurotransmitters are released into the synaptic cleft.
Reuptake transpoters	See Lecture Table
Otto Loewi	See Lecture Table
Acetylcholine	See Lecture Table
Ionotropic receptors	See Lecture Table
Depolarization, EPSPs	See Lecture Table
Hyperpolarization, IPSPs	See Lecture Table
Glutamate (glutamic acid), GABA	See Lecture Table

Spatial and temporal	See Lecture Table
summation of neuronal	
input	
Metabotropic receptors,	See Lecture Table
GPCRs	
Spatial and temporal	See Lecture Table
summation of neuronal	
input	
Metabotropic receptors,	See Lecture Table
GPCRs	
GPCR signaling: receptor,	See Lecture Table
G-Protein, effector enzyme,	
intracellular messenger,	
protein kinase	
СН 7	
Central nervous system	The part of the nervous system that contains the brain and the spinal cord.
(CNS): brain, spinal cord	
Peripheral nervous system	The Peripheral Nervous System has multiple components. It encompasses the
(PNS): sensory,	sensory systems and their connection with the brain. Also included are the
neuromuscular, autonomic,	connections between the CNS and muscle fibers. The autonomic nervous system
enteric	is also a part of the PNS. The last part is the enteric nervous system which is an
	elaborate network of neurons in the gastrointestinal system.
Autonomic: sympathetic	See Lecture Table
and parasympathetic	
Autonomic	See Lecture Table
neurotransmitters:	
norepinephrine,	See Lecture Table
acetylcholine	
Agonist, antagonist	Agonists increase the effects, whereas antagonists decrease the effects
Sympathomimetic,	See Lecture Table
sympatholytic,	
parasympathomimetic,	
parasympatholytic	
Acetylcholine, basal	See Lecture Table
forebrain nuclei, midbrain	
nuclei	
Serotonin, raphe nuclei	See Lecture Table
Dopamine, substantia	See Lecture Table
nigra, ventral tegmentum	
Norepinephrine, locus	See Lecture Table
coeruleus	
Biosynthesis of	See Lecture Table
monoamine	
neurotransmitters	
Peptide neurotransmitters	See Lecture Table
Seizure, idiopathic seizure	See Lecture Table
Epilepsy	See Lecture Table
Surgical procedures for	See Lecture Table
seizure disorders	
Anti-seizure medications	See Lecture Table
СН 8	
Pharmako, pharmacology	See Lecture Table
. 31	

NA 11 1 1	
Medicine, poison	The only difference between a medicine (positive effects on the body) and a
Deve colour	poison (negative effects on the body) is the dose.
Paracelsus	See Lecture Table
Tedtrodotoxin (TTX)	See Lecture Table
Blood-brain barrier	See Lecture Table
TTX resistance	See Lecture Table
Saxitoxin (STX)	See Lecture Table
Paralytic shellfish	See Lecture Table
poisoning (PSP)	
Batrachotoxin (BTX)	See Lecture Table
Cocaine, local anesthesia	See Lecture Table
Psychoactice drug,	Psychoactive drugs are drugs that have a profound effect on the mind or psyche.
psychopharmacology	
Most widely used	See Lecture Table
psychoactive drugs (Top 5)	
Route of administration,	The route of administration depends on the drug. Caffeine is ingested along with
route of entry	alcohol and arecoline. Cannabis is inhaled along with nicotine.
СН 9	
caffeine	See Lecture Table
Caffeine containing plants	Plants that contain caffeine include coffee, tea, cacao, yerba mate, guanana, and
	kola.
Adenosine	See Lecture Table
Nicotine, tobacco	See Lecture Table
Alcohol, ethyl alcohol	See Lecture Table
Sedative-hypnotic drugs	See Lecture Table
Barbituates,	See Lecture Table
benzodiazepines	
General anesthetics	See Lecture Table
Opium, opium poppy	See Lecture Table
(Papaver somniferum)	
Morphine, opiods	See Lecture Table
Endorphins	See Lecture Table
Coca (Erythroxylum coca)	See Lecture Table
Cocaine	See Lecture Table
Effects of cocaine: at	See Lecture Table
synapse, CNS and	
autonomic	
Psychosis	See Lecture Table
Amphetamine and related	See Lecture Table
molecules	
Psychedelics/hallucinogens	See Lecture Table
Albert Hofman	See Lecture Table
Psilocybin, DMT, mescaline	See Lecture Table
Cannabis, cannabinoids	See Lecture Table
Retrograde signaling	See Lecture Table
CH 10	
Human genome	See Lecture Table

Transcription factor	See Lecture Table
-	
Embryonic stem cell	See Lecture Table
Neural progenitor cell	See Lecture Table
Neurogenesis	The creation of new neural cells from neural progenitor cells
Gliogenesis	The creation of new glial cells from neural progenitor cells
Neural tube	See Lecture Table
Growth cone	See Lecture Table
Cytoskeleton:	See Lecture Table
microfilaments,	
microtubules	
Roger Sperry	See Lecture Table
Chemo-affinity hypothesis	See Lecture Table
Nerve growth factors,	See Lecture Table
neurotrophins	
Nerve guidance	Nerve guidance is governed by neurotrophins with varying methods on how the
	systems of guidance work; these differences are due to the different properties
	of the neurotrophins, generally divided into soluble and contact neurotrophins.
Synaptogenesis	The formation of new neuron connecitons
Synaptic pruning	See Lecture Table - Pruning
Neuroplasticity: pre-	Neuroplasticity is the change in the wiring of neurons in an organism that can be
synaptic and post-synaptic	divided into pre-synaptic and post-synaptic mechanisms.
mechanisms	
	Pre-synaptic – receptors on the axon terminus responding to the released
	neurotransmitter, leading to an effect (glutamatergic synapse: glutamate + pre-
	syn glutamate receptors \rightarrow open Na ⁺ and Ca ⁺⁺ channels, strengthening synapse).
	Retrograde signals can also contribute.
	Post-synaptic – influence gene transcription to produce large numbers of
	neurotransmitter receptors are produced and inserted into post-synaptic
	membrane.
CH 11	
Brain lesions and their	Stroke – disturbance of blood flow to a region of the brain sufficient to lose a loss
causes	of function
	Tumor – issues with transcription factors, signaling molecules/molecular
	checkpoints, DNA mutation affecting division regulation.
	Physical trauma – MTBI or TBI, closed or penetrating (the brain) head injuries.
	Other – neuronal death
Static or structural brain	See Lecture Table
imaging	Distographs taken using x rays that roly upon the veried normachility of y rays
x-ray photography	Photographs taken using x-rays that rely upon the varied permeability of x-rays
Wilom Böntaan	of various tissues and biological structures.
Wilem Röntgen	The discoverer of x-rays, he won the first Nobel Prize in Physics in 1895
Communities of a set of a	Cas Lastura Tabla
Computed axial	See Lecture Table
tomography (CAT, CT)	
tomography (CAT, CT) Nuclear magnetic	See Lecture Table See Lecture Table
tomography (CAT, CT) Nuclear magnetic resonance (NMR)	See Lecture Table
tomography (CAT, CT) Nuclear magnetic	

Magnetic resonance	See Lecture Table
imaging (MRI)	
Dynamic or functional	See Lecture Table
brain imaging	
Hans Berger & EEG	See Lecture Table
Wilder Penfield & surgical	See Lecture Table
electrodes	
MEG	See Lecture Table
PET	See Lecture Table
PET radioactive isotopes:	See Lecture Table
18-F, 15-O, II-C	
Cyclotron	See Lecture Table
Ernest Lawrence	See Lecture Table
Trans-uranium elements	See Lecture Table
fMRI	See Lecture Table
Hemoglobin	See Lecture Table
BOLD signal	See Lecture Table
Spatial and temporal	See Lecture Table
resolution of brain imaging	
methodologies	
CH 12	
Sensory perception	See Lecture Table
(sensation + perception)	
Chemotaxis	See Lecture Table
E. coli motility: runs and	See Lecture Table
tumbles	
Phototaxis, phototropism	The process of moving toward light.
Naïve realism	What we perceive is identical to what exists in nature.
Five canonical senses in	Auditory (hearing), Visual (sight), Gustatory (taste), Olfactory (smell),
humans	Somatosensory (touch)
Vestibular and	The ability to detect the 3D orientation of one's body and parts including
proprioceptions	relationships with gravity and acceleration. It utilizes the vestibular system in the
	inner ear and information related to muscle tension and joint movement.
Visible light,	See Lecture Table
electromagnetic spectrum	
Karl von Frish	Scientist who discovered that honeybees have color vision. Bees also used
	polarized light to orient themselves.
Ultraviolet sensing in	Honeybees have additional capacities to see UV light allowing them to see
honeybees	patterns in flowers that attract them.
Infrared sensing in pit viper	Pit vipers have pit organs which can sense IR light in a similar way to eyes. It
	allows sight in dark.
Polarization of light	Polarization of light is the vibration of the electromagnetic field aligned in
	specific planes.
Auditory perception (in	Human auditory perception—see Hearing.
humans + animals)	··· · · · · · · · · · · · · · · · · ·
	Animals have different frequency ranges than humans, some higher (bats,
	dolphins, insects, whales)
Frequency, hertz (Hz)	How many cycles in a wave happen per second.
Echolocation	The use of emitting high-frequency sound and analyzing their rebound patterns
	to determine the physical orientation of the organism. Sight with sounds.
L	

Electric field detection	Some animals can detect electrical fields with ampullae of Lorenzini, especially
	from sharks and platupuses
Magnetic field detection	Many animals—fish, birds, turtles—can detect the earth's magnetic field for
	migration and orientation.
CH 13	
Anatomy of the human eye	Cornea – the outer layer of cells covering the iris.
	Iris – the pigmented muscle that adjusts the diameter of the pupil
	Pupil – the hole below the cornea that light goes through
	Fovea – the pit in the retina with a high concentration of cone cells
	Blind Spot – the retinal region internal to the optic nerve
	Blood vessels – the vessels that brings blood to the eye, enclosed by optic nerve
	Optic nerve – the nerve that connects the eyes to the brain
	Retina – the eye tissue containing the photosensitive cells and neurons
-	Sclera – the dorsal outer covering of the eye
Macula, fovea	See Lecture Table
Blind spot	See Lecture Table
Retina, photoreceptors,	See Lecture Table
rods, cones	
Rhodopsin and cone-opsin	See Lecture Table
photoreceptor proteins	
Light absorption spectra	See Lecture Table
(sensitivity spectra) of	
photoreceptor proteins	
Spatial distribution of	See Lecture Table
photoreceptors in the	
retina	
Trichromatic and	Humans generally have trichromatic vision, as characterized by the S, M, and L
tetrachromatic color vision	cone-opsins. There are two types of L cone-opsins though, so some women who
A	get both L-cone opsins in their X-chromosomes have tetrachromatic color vision.
Anomalous color vision	The decrease in ability to distinguish colors—in other words, color blindness.
Color blindness: red-green	Red-green colorblindness (inability to distinguish between red and green) results
and blue-yellow	from a defect/absence of an L or M cone-opsin. They are sex-linked, so they affect 2% of males and 0.1% of females.
	affect 2% of males and 0.1% of females.
	Blue-yellow colorblindness (inability to distinguish between blue and yellow)
	results from a defect/absence of S cone-opsin gene/protein. It is rarer (0.01%)
	because it is not sex-linked.
Retinal achromatopsia	See Lecture Table
Photoreceptor cell	See Lecture Table
structure, inner and outer	
segment	
Retinal, vitamin A, beta-	See Lecture Table
carotene	
GPCR amplification and	See Lecture Table
photoreception	
Major cell layers in the	See Lecture Table
retina: photoreceptor,	
bipolar, ganglion	
Amacrine and horizontal	See Lecture Table
cells	
Vertebrate vs. invertebrate	Vertebrates have the eye typical of our specific study (see anatomy of human
eye structure	eye). Invertebrates (like octopi) have eyes they acquired via convergent

	evolution. The eye has its cellular order (photoreceptor cells, bipolar cells,
	ganglion cells) reversed in comparison to vertebrate eyes.
LGN	See Lecture Table
Contralateral connectivity	The phenomena where information from the left side of the world gets analyzed
	in the right side of the brain and vice-versa.
Visual cortical maps	Regions of the primary visual cortex (V1, V2, V3, etc.) have a map of visual space.
	This means that receptive fields of adjacent photoreceptor cells respond to
	regions of visual space nearby. This leads to the preservation of the
	topographical relationships of images throughout the visual nerve system.
Receptive field of cell	See Lecture Table
V1 lesion, scotoma	A lesion in the V1 section of the brain leads to scotoma or anopia.
V4 lesion, cortical	A lesion in the V4 section of the brain leads to colorblindness.
achromatopsia	
V5 lesion, motion blindess	A lesion in the V5 section of the brain leads to motion blindness.
Infero-temoporal cortex	The visual cortical region in the inferior and medial temporal lobe found in
(IT) and complex visual	monkeys and humans that respond selectively to images and faces. Lesions in
features	this area impair the ability to recognize objects and faces.
Prosopagnosia	See Lecture Table
CH 14	
Sound: physical and	See Lecture Table
perceptual properties	
Loudness, pitch, timbre	Loudness = amplitude, pitch = frequency, timbre = complex wave summations
	with amplitude and frequency components.
Speed of sound	See Lecture Table
Joseph Fourier analysis	See Lecture Table
Tympanic membrane,	The tympanic membrane is the ear drum. The vibrations of the membrane
ossicles	provoke movement in the ossicles (hammer, anvil, and stirrup) that create
	vibrations on the oval membrane, and consequently, the basilar membrane.
Cochlea, basilar membrane	See Lecture Table
Auditory nerve	See Lecture Table
Perception of one's own	See Lecture Table
voice	Carlestone Table
Auditory neural pathways	See Lecture Table
into brain	
Primary auditory cortex, A1	See Lecture Table
Hearing loss: infection,	See Lecture Table
genetic, noise-induced Decibel scale	Named after Alexander Graham Bell, it describes a logarithmic scale to categorize
Decider scale	sounds of varying loudness.
	sounds of varying loudness.
	25 dB – quiet room
	50 dB – human speech
	80 dB – noisy restaurant
	100 dB – jackhammer
	120 dB – concert
Hearing aids: acoustic	Hearing aids (acoustic amplifiers) generally assist in hearing by amplifying the
amplifier, cochlear implant	sounds around, making it louder for the few remaining functional hair cells to
	pick up. Cochlear implants can restore some hearing functions to completely
	deaf people, but is nowhere near the same caliber as normal hearing.
Vestibular system	See Lecture Table
vestivalar system	

Semicircular canals, utricle,	See Lecture Table
saccule	
Otoliths CH 15	See Lecture Table
Volatile molecules and	Volatile molecules are molecules that exist in a gaseous form readily in nature, or
aroma	at least have a partial pressure that requires some molecules to exist in vapor
	form. These molecules that exist in the air can be picked up by olfactory
	receptor cells through inhalation through the nose. Aromas can consist of a
	mixture of molecules that interact with various amounts of different protein
	receptors.
Olfactory epithelium	The external layer of cells lining the nasal cavity that is responsible for catching
	and detecting aromatic molecules.
Olfactory receptor cells and	See Lecture Table
stem cells	
Olfactory receptor proteins	See Lecture Table
Numbers of olfactory	Humans have 350 (low mammalian range) different types of olfactory receptor
receptor proteins in	proteins. Fish have about 100; mice (high mammalian range) have about 1300.
humans, mammals, fish	
Essential oil	Originally designated the oily concentration of volatile aromatic molecules from
	plants. Oils are generally hydrophobic, prepared by distillation and heating.
Small molecular changes	Small changes in molecular structures can affect the way that molecule is
and possible effects on	perceived by an organism, due to it possibly binding to a different receptor
smell	protein in the nasal epithelium.
Thiols	See Lecture Table
Anosmia Olfastariu hulh	See Lecture Table
Olfactory bulb	See Lecture Table
Olfactory neural pathways	Molecule > olfactory receptor proteins (nasal epithelium) > olfactory receptor cell axons > mitral cells in olfactory bulb > axons to forebrain > pyriform cortex >
	thalamus > orbitofrontal cortex (hippocampus and hypothalamus)
Pheromone	See Lecture Table
CH 16	
Taste buds	See Lecture Table
Taste cell replacement	See Lecture Table
Five canonical tastes	See Lecture Table
lons and ion-channel	H ⁺ , Na ⁺ , and Ca ⁺⁺ and their respective channels are used in taste receptors, with
proteins involved in taste	Na ⁺ related to the salty taste, H ⁺ related to a sour taste, and Ca ⁺⁺ related to the
perception	pungent, cool, and spicy/hot perceptions.
GPCRs and taste	See Lecture Table
perception	
Sugar and synthetic	Sugar–sucrose–is responsible for the tastes of sweetness. Evolutionarily, that
sweeteners	taste designated good/healthy foods. Now, it is put into every food, so "diet"
	options exist: aspartame, saccharin, neotame, stevioside (a plant extract), and
	sucralose. Many of the synthetic sweeteners were created via the "principle of limited sloppiness" i.e. on accident.
Umami	See Lecture Table
Gustatory neural pathways	See Lecture Table
into brain	
Capsaicin, chili, hotness	See Lecture Table
TRP receptors	See Lecture Table
Menthol, coolness	See Lecture Table

Isothiocynates	See Lecture Table
flavor	See Lecture Table
CH 17	
Somatosensory Receptors	Receptor proteins within the nerve fiber membrane of nerves near the skin that respond to various physical stimuli. Generally responsive to touch, poking, and temperature.
Dorsal-root ganglion	Cell bodies for the nerve fibers that enervate the skin. It rests between the dendrite containing somatosensory receptors and the axon that leads to the central nervous system.
Receptive Fields	Defined by the region of skin where a physical stimulus would elicit activity in a specified neuron. Spatial information with regards to touch is maintained along the neural pathway.
Primary Somatosensory Cortex (S1)	The part of the brain that analyzes touch information, it contains a "map" of one's body. It receives signals from the contralateral side of the body. A lesion would produce a loss of sensation (similar to visual scotoma) in the corresponding area of the body the lesion hit in the brain.
Wilder Penfield	Canadian neurosurgeon who aided in the discovery of somatosensory body maps. He electrically stimulated different regions of the cerebral cortex and observed patient sensations.
Somatosensory Body Map	A map of what regions of the somatosensory cortex correspond to what regions of the body. Created by Wilder Penfield, it shows that most parts of the body maintain similar orientation in their representation in S1. The more representation a body part has in S1 (i.e. amount of neurons) the more sensitive
Neglect Syndromes	they are. Touch sensation is working, but is ignored or not recognized unless attention is brought to it. It can be caused by a lesion in the secondary somatosensory cortex (S2, S3, S4, S5)
Somatosensory Agnosia	Lesions in the secondary somatosensory cortex which cause touch sensations that feel weird and confusing.
Mouse Whisker Barrels	Collections of neurons in the brain (grouped together like a barrel) that receive information from a single whisker. Mice use whiskers for increased perception of the environment. If one whisker is destroyed, the corresponding barrels help make adjacent whiskers more sensitive (an effect of neuroplasticity)
Phantom Limbs	Analogous process to mice losing whiskers. When a human loses an arm, the region of the brain that codes for the neurons that were removed rewire to new areas on the body. Thus, the part of the brain stays in use, but the analogous body part is no longer there: a phantom sensation is produced.
Neroplasticity: Synaptic Mechanisms	Neurons in the brain that analyzed a now missing part of the body rewire to adjacent areas of the cortex allowing for the sensation of the missing part to exist alongside a sensation of a body part that the new neurons associated with.
Primary Motor Cortex (M1)	The region of the brain immediately anterior to the central sulcus, it sends out signals that lead to neuromuscular junctions and triggers the contraction of muscle fibers. There is a contralateral connection between M1 and the body (right controls left and vice versa). Lesions in M1 can lead to paralysis.
Motor Body Map	The map that is contained within M1 that allows for successful signal propagation to the appropriate body parts. Signal mapping is maintained within the neurons.
Apraxis	A disorder to organization of body movements due to a lesion in the premotor areas of the brain.
Mirror Neurons	Neurons that are active during both movement and observation of a movement. Invoked as a contributor to the neuronal basis of empathic connections between persons.

Anosognosia	Lesions in the posterior frontal and anterior parietal lobes of the right cerebral hemisphere (only) lead to not only weirdness and paralysis, it also leads to a denial of anything wrong.
CH 18 Hemispheric Asymmetry	In spite of the symmetrical look of the brain (macroscopically) the underlying processes and neuronal connections are different on both sides (microscopically).
Face Perception, Prosopagnosia	Posterior temporal lobe responsible for perception of human faces, and some aspects of face perception are lateralized, and each side of a face looks slightly different. Prosopagnosia is an abnormality in which faces cannot be recognized.
Aphasias	The general clinical condition of some kind of language impairment.
Broca's Aphasia, Production Aphasia	Paul Broca found an association between lesions in the left frontal lobe and a person's inability to speak. Broca's Aphasia describes a condition in which a person has trouble with producing spoken and written language. Forms from a lesion win Broca's area
Wernicke's Aphasia, Comprehension Aphasia	An aphasia described by Carl Wernicke in which there is a problem with the comprehension of spoken and written language. Forms from a lesion in Wernicke's area.
Wada Test	A presurgical test created by Juhn Wada, it involved injecting a sedative-hypnotic barbiturate into the right or left carotid artery and asking the patient to count. Patients who were injected in the left side stopped counting for the most part, confirming the left side of the brain as the dominant side for language. <i>Type: Left:Right:Both</i> Right Handed: 97:3:0 Left Handed: 70:15:15
Corpus Callosum, Callosotomy	The severing of the corpus callosum (the bridge between brain hemispheres) due to its negative contribution during seizure attacks.
Roger Sperry, split-brain patients	Sperry worked with splitting the corpus callosum in epileptic patients. After the surgery, Sperry would perform an experiment stimulating both sides of the cortex differently and comparing results.
Lateralization of cortical function	The differentiation of certain functions/superiorities of one cortex hemisphere over another. Left: superior in language, numeric reasoning, visual detail/ Right: nonverbal communication, music
Synesthesia	Stimuli of one sense eliciting a sensation in another sense. It may have a significant genetic component (Nabokovs). It may be simulated with psychoactive drugs.
Albert Einstein's brain differences	It had an expanded area of tissues in the parietal lobes near the junction with temporal lobes (spatial perception). This may be the cause of his great understanding of the physical universe in regards to space and time.