Electricity

 \triangleright

- Charges on a plane C
 - |a x b| = ab(sin⊖)
 - a b = ab(cosθ)
- Conductors v. Insulators
 - Conductors = Free electrons
 - Insulators = no free electrons, work required
- Point Charge = Spherical Symmetry
 - Electric Field
 - E = k|q| / r²
 - $\mathbf{E} = \lambda / 2\pi r^2 \varepsilon_0; \ \lambda = q / d$
 - (for an infinite line of charge)
 E = σ / 2ε₀; λ = q / A
 - (for an infinite charged plate)
- Induction Effect (+) charge induce dipole on neutral objects
- Dipole
 - E_D (dipole) decreases rapidly
 - p = dipole moment = qd
 - E = 2kp/r³ (sum of E on a planar charge system)
 - cnarge Torque
 - τ=pxE
 - τ = pE(sinΘ)
- Energy

۶

- U = -pE(cosΘ)
- If a dipole starts at an angle, it will oscillate
- Gauss's Law
 - J = Flux = j A
 - $J = jA(cos\Theta) = jA$
 - $\phi_E = E \bullet A = EA(\cos\Theta) = Electric Flux$
 - $\phi_E = \oint E \cdot dA = EA$ (with surface perpendicular to E)
 - Point charge: $\phi_E = 4\pi r^2 E$
 - $\phi_E = q_{enclosed} / \epsilon_0$

- Answers (1) Charge location, (2) E
- Conductors

Δ

С

- Conductor negates E inside (due to change separation)
- Electric Potential Scalar
- ΔV = ΔU / q
 - Parallel capacitor each plate gives off E = σ / ε₀
 - $U = -qEx (\Delta U = Eq(x_2 x_1))$
 - From above 2 equations, V = -Ex + C
 - ΔV = ∫ E dL; V = kq / r
 - $\Delta V_{\text{point charge}} = q / 4\pi r \epsilon_0$
 - Apply 3 charges on plane
 - B separated by r = d
 - Potential at A: $V(A) = V_{1}$ (A) + $V_2(B)$
 - $V(A) = [q_1 + q_2] /$
 - 4πε₀d√2
 - V = constant at any point in a conductor
 - E = 0 at any point in conductor
- Capacitance F (|| plate capacitor) origin on the right (negative) plate
 - Parallel plate capacitor charge =
 - equal and opposite on each side
 - $\mathbf{C} = \boldsymbol{\epsilon}_0 \mathbf{A} / \mathbf{d}$ (from V = $\int \mathbf{E} \cdot \mathbf{d} \mathbf{I}$, $\mathbf{E}_{||} = \sigma / \epsilon_0$
 - U = q²2C
- Circuits Capacitance
 - q = q₁ + q₂ (parallel); q = q₁ = q₂ (series)
 - V = V₁ = V₂ (parallel); V = V₁ + V₂ (series)
 - C = C₁ + C₂ (parallel) C⁻¹ = C₁⁻¹ + C₂⁻¹ (series)
- Dielectrics

- E = V / d ; gets smaller with smaller
 A, larger d
- C = KC₀ = KAε₀ / d
- Current Amp
 - Motion of equivalent positive charges
 - $I = \Delta q / \Delta t$
 - I = V / R
 - Resistance Ω

⊳

⊳

- R = V / I
- Higher T → Higher KE → More resistance
- Resistance is nonconservative
- $P = IV = V^2 / R = I^2 R$
- Circuits Resistors
- R⁻¹ = R₁⁻¹ + R₂⁻¹ (parallel)
- R = R₁ + R₂ (series)
- Equivalent Circuits
- RC Circuit
 - V = q / C + *i*R; *i* = current from capacitor
- q(t) = CV[1 e^{-t / RC}]
 - $= i(t) = Ve^{-t/RC} / R$
- Magnetism

⊳

≻

- No point charge
- ▶ $\phi_{M} = \oint \mathbf{B} \cdot \mathbf{dA} = 0$ (closed surface)
- Magnetic force
 - F = qv x B = qvB(sinO)
 - F = IL x B = ILB(sinO)
 - Angular motion • Uses $a_c = V^2 / r$; F = ma; F_M =
 - qbB(sinO)
 - ω = qB / m (moving perpendicular to field)
 - $T = 2\pi / \omega$
 - Magnetic dipole
 - μ₀ = IA

- . τ = μ x B
- ≻ Magnetic Current
 - Current flows induce a magnetic . field
 - μ₀ = 4π(10⁻⁷) ٠
 - Infinite wire = $\mu_0 I / 2\pi r = B$
 - . Force between 2 wires • F = μ₀l₁l₂L / 2πd
 - Ampere's Law
 - $\oint \mathbf{B} \bullet d\mathbf{L} = \mu_0 \mathbf{I}$ •
 - Surface can be an open •
 - surface

- ≻ Solenoid - store a charge
 - Magnetic current concentrated in the center
 - B = μ₀l (N/L); B = nμ₀l
- Induction ۶

•

- Causes Change in I \rightarrow E . •
 - Faraday's Law
 - ∮ B bL = -d/dt ∫ B dA ٠
 - $\mathcal{E} = d\phi_B / dt$ •
 - $\mathcal{E} = \mathbf{v}_0 \mathbf{L} \mathbf{B} = \mathbf{I} \mathbf{R}$ ٠
 - $I = v_0 LB / R$
 - Lentz's Law

- Currents (Inducted) counter a ٠ B field currently being transmitted to ensure cooperation of $\mathbf{1}^{st}$ law
- $\boldsymbol{\epsilon}$ only exist $\Delta \varphi_{\scriptscriptstyle B}$
 - $v_{metal} = RMg / (LB)^2$
 - E = vLB .
 - I = vLB / R
 - Solenoid = $\mu_0 n^2 Al(di / dt) = \Delta V$

	Electic	Magnetic
Field	E	В
Potential	V	
Force	$F_E = Q(E + U \times B)$	F _M = IL x B
Point	E = q / 4πε₀r	
Line	E = λ / 2πε₀r	B = B = μ₀l / 2πr
Plane	Ε = σ / 2ε₀	B = nµ₀l
Device	$C = A\epsilon_0 / d$	L =
Voltage	V = q/C	V = -LBv
Energy	$U_{\rm E} = \frac{1}{2} {\rm CV}^2$	$U_{M} = \frac{1}{2} LI^{2}$
Dipole	P=qd U=-p●E	μ=IA U=-μ●B
	T = p x E	τ = μ x B
Maxwell	$\oint \mathbf{E} \bullet \mathbf{dA} = \mathbf{q}_{\text{enclosed}} / \mathbf{\epsilon}_0$	∮ B • dA = 0
	$\mathcal{E} = -d\phi_e / dt$	∮ B ∙ dl = μ₀l